The NISS onboard NEXTSat-1 is being developed by Korea astronomy and space science institute (KASI). For the study of the cosmic star formation history, the NISS performs the imaging spectroscopic observation in the near-infrared range for nearby galaxies, low background regions, star-forming regions and so on. It is designed to cover a wide field of view (2 × 2 deg) and a wide wavelength range from 0.95 to 3.8 μm by using linear variable filters. In order to reduce the thermal noise, the telescope and the infrared sensor are cooled down to 200 K and 80 K, respectively. Evading a stray light outside the field of view and making the most use of limited space, the NISS adopts the off-axis reflective optical system. The primary and the secondary mirrors, the opto-mechanical part and the mechanical structure are designed to be made of aluminum material. It reduces the degradation of optical performance due to a thermal variation. This paper presents the study on the conceptual design of the NISS.
We conducted thermal analyses and cooling tests of the space observation camera (SOC) of the multi-purpose infrared imaging system (MIRIS) to verify passive cooling. The thermal analyses were conducted with NX 7.0 TMG for two cases of attitude of the MIRIS: for the worst hot case and normal case. Through the thermal analyses of the flight model, it was found that even in the worst case the telescope could be cooled to less than 206°K. This is similar to the results of the passive cooling test (~200.2°K). For the normal attitude case of the analysis, on the other hand, the SOC telescope was cooled to about 160°K in 10 days. Based on the results of these analyses and the test, it was determined that the telescope of the MIRIS SOC could be successfully cooled to below 200°K with passive cooling. The SOC is, therefore, expected to have optimal performance under cooled conditions in orbit.