본 연구에서는 지구화학모델 프로그램인 GEM-PSI를 이용하여 방해석과 석고의 첨가에 의한 시멘트 수화생성물에 대한 영향을 조사하였다. 방해석과 석고는 시멘트 수화과정의 주요 생성광물인 C-S-H 및 포틀란다이트(portlandite)의 생성에 큰 영향을 주지 않는 것으로 예측되었다. 하지만 방해석을 시멘트 구성성분의 최대 5%까지 첨가하는 경우 시멘트 수화생성물인 칼슘 모노카보네이트(monocarbonate) 광물의 생성을 촉진시키는 것으로 본 모델링 결과는 예측하였다. 하지만 칼슘의 첨가가 시멘트 수화과정의 생성물인 AFm 광물 및 헤미카보네이트(hemicarbonate) 광물의 생성은 억제하는 것으로 예측되었다. 석고를 시멘트 구성성분의 최대 5%까지 첨가하는 경우 시멘트 수화과정에 의하여 에트린자이트 광물의 생성이 촉진되는 것으로 모델링 결과가 예측하였다. 방해석과 석고 첨가에 의한 시멘트 수화생성물의 공극률은 방해석 및 석고의 첨가량이 증가함에 따라 일반적으로 감소하는 것으로 계산되었다. 하지만 방해석을 첨가하는 경우 첨가량이 시멘트 구성성분의 3% 미만일 때 수화생성물의 공극률이 같은 양의 석고를 첨가했을 경우보다 낮게 예측되었다. 반면에 방해석이 3% 보다 많은 양이 첨가될 경우 같은 양의 석고를 첨가시킨 경우보다 시멘트 수화생성물의 공극률이 높을 것으로 예측된다. 이러한 현상은 첨가된 방해석이 적정량을 넘게 되면 모든 방해석이 시멘트 수화과정에 의하여 소모되지 않고 다시 시멘트 수화생성물로 나타남으로써 시멘트 수화과정에 따른 다른 광물로의 변이가 제한됨을 알 수 있다. 반면에 석고가 첨가된 경우 시멘트 수화과정에 의하여 석고가 계속적으로 소모되어 다른 시멘트 수화생성물 특히 에트린자이트로 변환된다.
결정질암반중의 지하수 이동로인 열극은 모암과는 다른 이차광물로 구성되는 수가 많다. 그래서 방사성폐기물 처분장 모암중의 열극광물은 그들의 높은 표면 반응성 때문에 관심의 대상이 되고 있다. 본 논문에서는 선캠브리아기 편마암류로 구성되어 있는 충남 유구지역수리치 시추공 코아의 열극표면에서 발견된 점토광물의 생성과정을 고찰하였고, 그들과 현재 지표수 및 지하수와의 평형관계를 알아보았다. 편마암 열극에서 물-암석 상호반응은 깁사이트, 캐올리나이트, 스멕타이드, 일라이트 등을 생성시켰다. 열극점토광물은 두가지 다른 과정을 통해 생성된 것으로 판단된다. : (1) 열극주변 모암 확산대에서 장석의 Incongruent Dissolution에 의한 스멕타이트 또는 일라이트의 생성, (2) 열극틈 사이에는 깁사아트, 캐올리나이트, 스멕타이트 (또는 일라이트)가 지하수의 용존이온으로부터 침전. 열극충전광물은 깁사이트→캐올리나이트→스멕타이트 (또는 일라이트) 순으로의 광물생성순서를 보인다. 광물생성순서를 규제한 요인은 지하수의 pH 상승, 충전물에 의한 열극틈의 투수계수 감소, 그리고 알카리 및 알카리토 원소의 Immobility에 의한 것으로 보인다. 수리치 시추공 지하수의 pH는 8.6-9.2 범위이며, 화학성분상 Na-HCO3 형이며, Na와 HCO3는 Albite와 Calcite의 용해작용으로부터 공급된 것으로 보인다. WATEQ4/F 프로그램에 의한 지하수의 포화지수는 pH 상승에 따라 깁사이트와 캐올리나이트는 침전반응을 거쳐 평형상태로, 스멕타이트와 일라이트 평형상태를 거쳐 재용해성 환경으로의 변화를 지시한다. Na2O-Al2O3-SiO2-H2O계의 상안정도상에 지표수와 지하수 모두 캐올리나이트 안정영역에 속한다.