검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 10

        1.
        2014.03 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        We present preliminary observations of the field-aligned-irregularities (FAIs) in the E and F regions during the solar minimum (2009 - 2010) using the 40.8 MHz coherent backscatter radar at Daejeon (36.18°N, 127.14°E, 26.7°N dip latitude) in South Korea. The radar, which consists of 24 Yagi antennas, observes the FAIs using a single beam with a peak power of 24 kW. The radar has been continuously operated since December 2009. Depending on the manner of occurrence of the backscatter echoes, the E-region echoes are largely divided into two types: quasi-periodic (QP) and continuous echoes. Our observations show that the QP echoes occur frequently above an altitude of 105 km in the post-sunset period and continuous echoes occur preferentially around an altitude of 105 km in the post-sunrise period. QP echoes appear as striated discrete echoes for a period of about 10 - 20 min. The QP-type echoes occur more frequently than the continuoustype echoes do and the echo intensity of the QP type is stronger than that of the continuous type. In the F region, the FAIs occur at night at an altitude interval of 250 - 450 km. As time proceeds, the occurrence height of the FAIs gradually increases until early in the morning and then decreases. The duration of the F-region FAIs is typically a few hours at night, although, in rare cases, FAIs persist throughout the night or appear even after sunrise. We discuss the similarities and differences of the FAIs observed by the Daejeon radar in comparison with other radar observations.
        2.
        2013.12 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        To identify seasonal and latitudinal variations of F2 layer during magnetic storm, we examine the change of daily averages of foF2 observed at Kokubunji and Hobart during high (2000~2002) and low (2006~2008) solar activity intervals. It is found that geomagnetic activity has a different effect on the ionospheric F2-layer electron density variation for different seasons and different latitudes. We, thus, investigate how the change of geomagnetic activity affects the ionospheric F2-layer electron density with season and latitude. For this purpose, two magnetic storms occurred in equinox (31 March 2001) and solstice (20 November 2003) seasons are selected. Then we investigate foF2, which are observed at Kokubunji, Townsville, Brisbane, Canberra and Hobart, Dst index, Ap index, and AE index for the two magnetic storm periods. These observatories have similar geomagnetic longitude, but have different latitude. Furthermore, we investigate the relation between the foF2 and the [O]/[N2] ratio and TEC variations during 19-22 November 2003 magnetic storm period. As a result, we find that the latitudinal variations of [O]/[N2] ratio and TEC are closely related with the latitudinal variation of foF2. Therefore, we conclude that the seasonal and latitudinal variations of foF2 during magnetic storm are caused by the seasonal and latitudinal variations of mean meridional circulation of the thermosphere, particularly upwelling and downwelling of neutral atmosphere during magnetic storm.
        3.
        2013.12 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        Sudden enhancements of daytime NmF2 appeared in Anyang ionosonde data during summer seasons in 2006-2007. In order to investigate the causes of this unusual enhancement, we compared Anyang NmF2’s with the total electron contents (GPS TECs) observed at Daejeon, and also with ionosonde data at at mid-latitude stations. First, we found no similar increase in Daejeon GPS TEC when the sudden enhancements of Anyang NmF2 occurred. Second, we investigated NmF2’s observed at other ionosonde stations that use the same ionosonde model and auto-scaling program as the Anyang ionosonde. We found similar enhancements of NmF2 at these ionosonde stations. Moreover, the analysis of ionograms from Athens and Rome showed that there were sporadic-E layers with high electron density during the enhancements in NmF2. The auto-scaling program (ARTIST 4.5) used seems to recognize sporadic-E layer echoes as a F2 layer trace, resulting in the erroneous critical frequency of F2 layer (foF2). Other versions of the ARTIST scaling program also seem to produce similar erroneous results. Therefore we conclude that the sudden enhancements of NmF2 in Anyang data were due to the misrecognition of sporadic-E echoes as a F-layer by the auto-scaling program. We also noticed that although the scaling program flagged confidence level (C-level) of an ionogram as uncertain when a sporadic-E layer occurs, it still automatically computed erroneous foF2’s. Therefore one should check the confidence level before using long term ionosonde data that were produced by an auto-scaling program.