Voltage dependent calcium channel (VDCC), one of the most important regulator of Ca 2+ concentration in neuron, play an essential role in the central processing of nociceptive information. The present study investigated the antinociceptive effects of L, T or N type VDCC blockers on the formalin-induced orofacial inflammatory pain. Experiments were carried out on adult male Sprague-Dawley rats weighing 220-280 g. Anesthetized rats were individually fixed on a stereotaxic frame and a polyethylene (PE) tube was implanted for intracisternal injection. After 72 hours, 5% formalin (50 μL) was applied subcutaneously to the vibrissa pad and nociceptive scratching behavior was recorded for nine successive 5 min intervals. VDCC blockers were administered intracisternally 20 minutes prior to subcutaneous injection of formalin into the orofacial area. The intracisternal administration of 350 or 700 μg of verapamil, a blocker of L type VDCC, significantly decreased the number of scratches and duration in the behavioral responses produced by formalin injection. Intracisternal administration of 75 or 150 μg of mibefradil, a T type VDCC blocker, or 11 or 22 μg of cilnidipine, a N type VDCC blocker, also produced significant suppression of the number of scratches and duration of scratching in the first and second phase. Neither intracisternal administration of all VDCC blockers nor vehicle did not affect in motor dysfunction. The present results suggest that central VDCCs play an important role in orofacial nociceptive transmission and a targeted inhibition of the VDCCs is a potentially important treatment approach for inflammatory pain originating in the orofacial area.
We investigated the role of the central MAPK pathways in extra-territorial (referred) pain resulting from inflammation of the temporomandibular joint (TMJ). Experiments were carried out on male Sprague-Dawley rats weighing 220-280 g. Under anesthesia, these animals were injected with 50 μL of complete Freund's adjuvant (CFA) into the TMJ using a Hamilton syringe. In the control group, saline was injected into the TMJ. To identify the extent of inflammation of the TMJ, Evans blue dye (0.1%, 5 mg/kg) was injected intravenously at 1, 3, 6, 9, 12 and 15 days after CFA injection. The concentration of Evans blue dye in the extracted TMJ tissue was found to be significantly higher in the CFA-treated animals than in the saline-treated group. Air-puff thresholds in the vibrissa pad area were evaluated 3 days before and at 3, 6, 9, 12, 15 and 18 days after CFA injection into the TMJ. Referred mechanical allodynia was established at 3 days, remained until 12 days, and recovered to preoperative levels at 18 days after CFA injection. This referred mechanical allodynia was observed in contralateral side area. To investigate the role of central MAPK pathways, MAPK inhibitors (10 μg) were administrated intracisternally 9 days after CFA injection. SB203580, a p38 MAPK inhibitor, significantly attenuated referred mechanical allodynia, as compared with the vehicle group. PD98059, a MEK inhibitor, also reduced CFA-induced referred mechanical allodynia. These results suggest that TMJ inflammation produces extra-territorial mechanical allodynia, and that this is mediated by central MAPK pathways.