Preservation of sperm is essential for long-term storage of valuable animal genetic resources and for the conservation of threatened mammalian species undergoing progressive extinction. In this study, using pig as a model system, we evaluated the feasibility of germ-plasm preservation via sperm cell lyophilization. We show that, pig sperm can be successfully lyophilized and stored in a liquid nitrogen-free condition for at least 6 months. Intracytoplasmic injection of lyophilized sperm (ICSI), stored at 4℃ for four months, into in vitro matured pig oocytes could successfully develop up to blastocyst stage (13.0±3.0%). Lyophilized sperm could also be stored at room temperature for at least three weeks without further compromising their in vitro development up to the blastocyst stage (14.6±3.2 vs. 16.6±5.1%; p>0.05). Blastocysts produced from ICSI of lyophilized sperm stored at 4℃ or room temperature contained similar number of cells per blastocyst (44.9±3.2 vs. 44.0±4.3; p>0.05) but was significantly lower than those produced from non-lyophilized fresh sperm (52.1±5.8 p>0.05). Interestingly, use of a custom-designed HEPES-buffered, calcium-free, defined medium for the lyophilization resulted in normal post-ICSI embryonic development up to blastula stage (23.4±2.8 vs. 24.0±2.9%) and, the resultant blastocysts contained similar number of cells per blastocyst (47.9±4.3 vs. 50.6±7.0) compared to those generated from non-lyophilized fresh sperm (p>0.05). These lyophilized sperm could also be stored at room temperature for at least three weeks with slight reduction in post-ICSI embryonic development (19.6±1.4%). Therefore, these results suggest that, pig sperm could be successfully and efficiently lyophilized for their long-term storage at 4℃. Lyophilization of sperm could be a practical option for long-term storage of mammalian germ-plasm.
Autophagy, the process of bulk degradation and recycling of long-lived proteins, macromolecular aggregates, and damaged intracellular organelles, has recently been shown to be important for pre-implantation development and cavitation in mouse embryos. This study investigated the occurrence of autophagy and its importance in determining the in vitro development of pig embryos produced by in vitro fertilization (IVF) or parthenogenetic activation (PA). Western blot analysis for autophagy marker, microtubule associated protein light chain 3 (MAP-LC3), revealed the temporal pattern of LC3-conversion with intense changes during 10 20 h post-insemination and at morula-blastocyst transition in pig embryos. Specific inhibition of autophagy in 2 4 cell stage pig embryos, by treatment with 3-methyladenine (3MA), did not affect their embryonic development up to morula stage (p>0.05) but completely blocked their progression to the blastocyst stage (0.0±0.0 vs. 28.5±1.7% p<0.05). On the other hand, autophagy-inhibition in morula stage embryos significantly inhibited the formation of blastocoel (14.9±3.6 vs. 37.5±7.2%) and reduced the proportion of expanded blastocysts (5.6±2.6 vs. 29.6± 4.6% p<0.05). TUNEL assay revealed that autophagy-inhibited embryos had significantly increased indices of apoptosis (10.2±0.4 vs. 2.3±0.2) and DNA fragmentation (0.8± 0.1 vs. 0.3±0.1) than those of controls (p<0.05). Interestingly, while anti-oxidants reduced (p<0.05) the apoptosis and improved the blastocyst formation rate in pig embryos, it had no influence (p>0.05) on the expression of MAP-LC3. These data therefore, suggest that autophagy may have essential role during blastocyst formation in pig embryos.