Ag pastes added to Bi-oxide frits have been applied to the electrode material of Si solar cells. It has been reported that frits induce contacts between the Ag electrodes and the Si wafer after firing. During firing, the control of interfaces among Ag, the glass layer, and Si is one of the key factors for improving cell performance. Specifically, the thermo-physical properties of frits considerably influence Ag-Si contact. Therefore, the thermal properties of frits should be carefully controlled to enhance the efficiency of cells. In this study, the interface structures among Ag electrodes, glass layers, and recrystallites on an n+ emitter were carefully analyzed with the thermal properties of lead-free frits. First, a cross-section of the area between the Ag electrodes and the Si wafer was studied in order to understand the interface structures in light of the thermal properties of the frits. The depth and area of the pits formed in the Si wafer were quantitatively calculated with the thermal properties of frits. The area of the glass layers between the Ag electrodes and Si, and the distribution of recrystallites on the n+ emitter, were measured from a macroscopic point of view with the characteristics of the frits. Our studies suggest that the thermophysical properties should be controlled for the optimal performance of Si solar cells; our studies also show why cell performance deteriorated due to the high viscosity of frits in Ag pastes.
In fabricating plasma display panels, the photolithographic process is used to form patterns of barrier ribs with high accuracy and high aspect ratio. It is important in the photolithographic process to control the refractive index of the photosensitive paste. The composition of this paste for photolithography is based on the B2O3-SiO2-Al2O3 glass system, including additives of alkali oxides and rare earth oxides. In this work, we investigated the density, structure and refractive index of glasses based on the B2O3-SiO2-Al2O3 system with the addition of Li2O, K2O, Na2O, CaO, SrO, and MgO. The refractive index of the glasses containing K2O, Na2O and CaO was similar to that of the [BO3] fraction while that of the SrO, MgO and Li2O containing glasses were not correlated with the coordination fraction. The coordination number of the boron atoms was measured by MAS NMR. The refractive index increased with a decrease of molar volume due to the increase in the number of non-bridging oxygen atoms and the polarizability. The lowest refractive index (1.485) in this study was that of the B2O3-SiO2-Al2O3-K2O glass system due to the larger ionic radius of K+. Based on our results, it has been determined that the refractive index of the B2O3-SiO2-Al2O3 system should be controlled by the addition of alkali oxides and alkali earth oxides for proper formation of the photosensitive paste.
서로 상호작용을 하는 다수의 이방성 함유체 및 균열(crack)을 포함하는 등방성 무한고체가 정적 무한하중을 받을 때 균열선단에서의 응력확대계수의 계산을 효과적으로 수행할 수 있는 수치해석 방법으로 체적 적분방정식법을 적용한다. 본 해석방법의 타당성과 우수성을 입증하기 위하여, 비교적 간단한 형태의 이방성을 나타나는 직교이방성 함유체와 균열이 포함된 무한고체가 무한하중을 받을 때 균열선단에서의 응력확대계수 계산을 수행하고, 상업용 유한요소법 코드인 ANSYS를 이용한 해석결과와 비교 검토하였다.