The immediate early gene c-fos has long been known as a molecular marker of neural activity. The neuron's activity is transformed into intracellular calcium influx through NMDA receptors and L-type voltage sensitive calcium channels. For the transcription of c-fos, neural activity should be strong enough to activate mitogen-activated protein kinase (MAPK) signaling pathway which shows low calcium sensitivity. Upon translation, the auto-inhibition by Fos protein regulates basal Fos expression. The pattern of external stimuli and the valence of the stimulus to the animal change Fos signal, thus the signal reflects learning and memory aspects. Understanding the features of multiple components regulating Fos signaling is necessary for the optimal generation and interpretation of Fos signal.
Ethanol actions in the amygdala formation may underlie in part the reinforcing effects of ethanol consumption. Previously a physiological phenomenon in the basolateral amygdala (BLA) that is dependent on neuronal network activity, compound postsynaptic potentials (cPSPs) were characterized. Effects of acute ethanol application on the frequency of cPSPs were subsequently investigated. Whole cell patch clamp recordings were performed from identified projection neurons in a rat brain slice preparation containing the amygdala formation. Acute ethanol exposure had complex effects on cPSP frequency, with both increases and decreases dependent on concentration, duration of exposure and age of the animal. Ethanol produces complex biphasic effects on synaptically-driven network activity in the BLA. These findings may relate to subjective effects of ethanol on arousal and anxiolysis in humans.