We report a simple benchtop method to synthesize diamonds from ethyl alcohol ( C2H6O) at ambient pressure and room temperature via solvothermal reactions in a liquid solution of table salt (NaCl) and their structural characterization using electron diffraction and high-resolution electron microscopy. In addition to the usual cubic phase of diamond, the hexagonal phase of diamond (lonsdaleite) has also been obtained and identified unambiguously. Many of the synthesized diamonds often contain structural defects including twinnings, stacking faults, and dislocations. The formation and growth of diamond under ambient conditions provide further insights into understanding of the natural existence of diamond on Earth as well as in outer space. While only nanometric diamonds have been observed in the present study, we believe this discovery will open up new ways that have long been sought to grow diamonds, including large size diamonds, in organic solutions at ambient conditions.