The study investigates the role of commodity prices and tax purpose recognition on bitcoin prices. Since the introduction of bitcoin in 2008, emphasis has focused on economists, policy-makers and analysts drastically increasing bitcoin’s accessibility and commodity values (Dumitrescu & Firică, 2014). This study employs GARCH and EGARCH from ARCH/GARCH family on daily nature data. We measure the volatile behavior of bitcoin by employing auto-regressive conditional heteroscedasticity model with the aim to explore the relationship between major commodities and bitcoin volatility. We focus on major commodities like gold, silver, platinum, and crude oil to be regressed with bitcoin. The daily prices of commodities were retrieved from www.investing.com and bitcoin prices from www.coindesk.com for the period from 29 April 2013 to 16 October 2018. Results confirmed the currency’s long-term volatile behavior, which is due to its composition and market dynamics, whereas the existence of asymmetric information effect is not confirmed. Tax recognition by other countries may in future help in controlling the volatility as bitcoin is not a country-specific security. But, only silver impacts on volatility in comparison to oil prices and platinum, which is due to its similar features with gold. Eventually, bitcoin can be used for risk diversification and money making.
The study investigates herding behavior in cryptocurrencies in different situations. This study employs daily returns of major cryptocurrencies listed in CCI30 index and sub-major cryptocurrencies and major stock returns listed in Dow-Jones Industrial Average Index, from 2015 to 2018. Quantile regression method is employed to test the herding effect in market asymmetries, inter-dependency and intra-dependency cases. Findings confirm the presence of herding in cryptocurrency in upper quantiles in bullish and high volatility periods because of overexcitement among investors, which lead to high volume trading. Major cryptocurrencies cause herding in sub-major cryptocurrencies, but it is a unidirectional relation. However, no intra-dependency effect among cryptocurrencies and equity market is observed. Results indicate that in the CKK model herding exists at upper quantile in market that may be due when the market is moving fast, continuously trading, and bullish trend are prevailing. Further analysis confirms this narrative as, at upper quantile, the beta of bullish regime is negative and significant, meaning the main source of market herding is a bullish trend in investment, which increases market turbulence and gives investors opportunity to herd. Also, we found that herding in cryptocurrencies exits in high volatility periods, but this herding mostly depends on market activity, not market movement.