The lightweight and high strength characteristics of aluminum alloy materials make them have promising prospects in the field of construction engineering. This paper primarily focuses on aluminum alloy materials. Aluminum alloy was combined with concrete, wood and carbon fiber reinforced plastic (CFRP) cloth to create a composite column. The axial compression test was then conducted to understand the mechanical properties of different composite structures. It was found that the pure aluminum tube exhibited poor performance in the axial compression test, with an ultimate load of only 302.56 kN. However, the performance of the various composite columns showed varying degrees of improvement. With the increase of the load, the displacement and strain of each specimen rapidly increased, and after reaching the ultimate load, both load and strain gradually decreased. In comparison, the aluminum alloy-concrete composite column performed better than the aluminum alloy-wood composite column, while the aluminum alloy-wood-CFRP cloth composite column demonstrated superior performance. These results highlight excellent performance potential for aluminum alloy-wood-CFRP composite columns in practical applications.