Tomb No. 1 (Donghachong) of the Buyeo Neungsan-ri Tomb complex (listed as UNESCO World Heritage Site), is a royal tomb of the Baekje Sabi Period. One wooden coffin unearthed there is an important relic of the funerary culture of the Baekje. This study examines the production techniques of gilt-bronze objects attached to the wooden coffin excavated from Donghachong. The base metal of the gilt-bronze object is pure copper, with single α phase crystals in a heterogeneous form containing annealing twins; Au and Hg are detected in the gilt layer. We suggest that the surface of the forging copperplate is gilded using a mercury amalgam technique; it is thought that the annealing twins of the base material formed during the heat treatment process for the sheet metal. The gilt layer is three to five times thicker for the gilt-bronze objects found near the foot of the coffin than those near the head. We estimate the plating process is carried out at least three times because three layers are identified on the plate near the head. Therefore, it is likely that the materials and methods used to construct the giltbronze objects found in different parts of the coffin are the same, but the number of platings is different. This research confirms the metal crafting techniques used in Baekje by the examination of production techniques of these gilt-bronze objects. Further, our paper presents an important example of restoration and reconstruction for a museum exhibition, through effective use of scientific analysis and investigation.
We investigated the effects of cadmium exposure and various stress on the transcription of heat shock protein 70 and 82 (HSP70 and HSP82) from Pardosa astrigera wolf spider. To do this, P. astrigera HSP70 and HSP82 genes were cloned and its full-length sequence determined. Female spiders were long-term exposed to cadmium or to polychlorinated biphenyl (PCB) for 2, 4 and 6 weeks and short-term exposed to endosulfan by dietary uptake. Female spiders were also exposed to various temperatures. HSP82 did not show a clear tendency of transcription induction following exposure to cadmium. On the contrary, HSP70 transcription gradually increased during the exposure to 2, 20 and 40 mM of cadmium for 2, 4 and 6 weeks. Transcript level of HSP70 was not significantly changed by endosulfan and PCB exposure. In the short-term (3 hr) temperature exposure, an increased expression of HSP70 was observed under the heat shock to 30°C and then slightly decreased at 35°C. However, induction of HSP70 transcription was not observed during the long-term (7 days) temperature exposure. Taken together, HSP70 gene appears to be up-regulated by cadmium in a time-dependent manner but little affected by other potential contaminants. Analysis of HSP70 transcript levels in P. astrigera collected from various fields revealed that levels of cadmium concentration were well correlated with HSP70 transcript levels (r2 = 0.76). Taken together, it was suggested that transcript level of HSP70 could be useful as a biomarker for the long-term cadmium exposure of P. astrigera.
We examined the effects of cadmium exposure and various temperature stress on the expression of Pardosa astrigera heat shock protein 70 (HSP70). To do this, P. astrigera HSP70 gene was cloned and its sequence determined. Female spiders collected from non-contaminated region were exposed to 40mM CdCl2 for 2, 4 and 6 weeks by dietary uptake. At the end of every 2, 4 and 6 weeks of exposure, a batch of 5 spiders was collected and total RNA was extracted from each batch of whole bodies. Female spiders were also exposed to different temperatures (20, 25, 30 and 35℃) for 3h and RNA extracted likewise. Transcription profiles of HSP70 in response to cadmium and temperature were determined by quantitative real-time PCR using 18S rRNA as reference gene for data normalization. HSP70 transcription gradually increased during 2,4 and 6 weeks of exposure to cadmium. In particular, the expression level at 6-week exposure was 3.4-fold higher than that of untreated control. In the temperature response, an increased expression of HSP70 was also observed as temperature increased up to 30℃ and then slightly decreased at 35℃. The expression level at 30℃ was 2.3-fold higher than that of 25℃. Taken together, HSP70 gene appears to be up-regulated by general stress factors including cadmium exposure and temperature increase.
In this study, plant regeneration through in vitro culture from plantlet stems of Yooja (C. junos Sieb.) and trifoliate orange (P. trifoliata Rafin.) was attempted to make mass-production system of virus-free plants having the same genotype with mother plant. In order to investigate physiological change depending on the developmental stage of plant regeneration, the changes of total protein, peroxidase and esterase activity and their isozyme patterns as well were examined in 1/2 MS medium. The results are as follows : 1. The MS medium for the optimal callus induction and shoot formation was utilized. The medium was supplemented either with 2,4-D and Kinetin or with BA and NAA. The optimal concentrations were the combination of 1.0mg/ 2,4-D +0.3mg/ Kinetin and 1.0mg BA +0.3mg NAA in callus induction and shoot formation, respectively. 2. For the plant regeneration from somatic embryos, 1/2 MS medium was used with supplements of growth regulators (free, 1.0mg/ IBA +1.0mg/ BA ,0.5mg/ IBA +0.5mg/ BA). Shooting and rooting were the best in the treatment of 0.5mg/ IBA and 0.5mg/ BA combination. 3. The total protein content has a tendency of increase with the developmental stage of embryo, but it was decreased at the plantlet. Also it was the highest at 8 and 6 weeks stage in C. junos Sieb. and P. trioliata Rafin, respectively. In the SDS-PAGE pattern of protein, C. junos Sieb. showed bands of 29.0 and 40kDa at 10 weeks. The 45,66 and 97.4 kDa bands at 10 weeks of culture were shown in P. trifoliata Rafin. 4. The highest esterase activity was shown at the 6 and 8 weeks of culture in C.junos Sieb. and P. trifoliata Rafin.., respectively. 5. Esterase isozyme patterns were shown difference according to the developmental stage. In C. junos Sieb. a new band was observed at pl 7.7 following 4 weeks culture. On the other hand, new bands in P. trifoliata Rafin. were observed at pl 7.5~6.5 following 4 and 6 weeks culture, respectively.
We compared microstructural features of the ordered cell and disordered leaves in Citrus junos Sieb. by electron microscopy. In the cell of the ordered leaves, many chloroplasts and large vacuoles were particularly observed. Also a lot of vessel, companion cell and big nucleus were presented in vascular bundle regions. The mitochondria and the other organelles were interspersed among the chloroplasts in a thin, peripheral layer of cytoplasm. The chloroplast possessed typical grana and intergranal lamellae, numerous starch grains and a few small osmophilic globules. Besides, microbodies were closely associated with the mitochondria and the chloroplast. The process of the formation of the secondary cell wall from primary cell wall was observed the vessel elements, the tonoplast wall and the secondary cell wall. It was observed that the oil sac with the unique perfume distributed the adjacent cell wall. In the cell of disordered leaves, the all of the organelles were thrust toward the cell wall due to the fusion of vacuoles in the cells. It was observed that a lot of the very small particles spreaded in the cytoplasm. The loss of unique perfume of the leaves was resulted in the destruction of the oil sac. Also, there was not observed grana, lamellae, starch and osmophillic globules in the chloroplast. The small distributed organelles was not observed but the elongation of the cell wall was proceed no longer. Therefore, the plasma membrane diverged from the cell wall. All of organelles in the cell had poor function and deformation. A massive vacuole was fulfilled in single cell and the vacuole contains a lot of large and small particles. The organelles were presented on the side of the cell wall according to the enlargement of vacuole and they were observed to be breakdown.