산업의 발달과 생활수준이 높아짐에 따라 에너지의 사용량이 증가되고 있는데 이중 대부분은 화석연료에 의해 충족되고 있다. 하지만 화석연료의 한계성과 온실가스 발생 등의 환경문제로 인해 새로운 대체 에너지 연구개발에 대한 관심이 크다. 바이오매스는 탄소중립이 가능한 친환경적 재생에너지 이다. 특히, 하수처리장에서 발생량이 지속적으로 증가되고 처리의 어려움을 가지고 있는 하수 슬러지 폐기물은 청정에너지와 자원으로 전환이 가능한 바이오매스이다. 이러한 바이오매스 폐기물의 전환기술 중 현재 관심을 가지고 연구가 진행되고 있는 것은 하수 슬러지를 열분해 또는 가스화 해서 바이오 가스, 바이오 오일, 슬러지 촤(sludge char)의 에너지를 생산하는 방법이다. 최근에는 마이크로 웨이브 가열방식에 의한 바이오매스 열적처리 방식에 대한 연구가 진행되고 있다. 마이크로웨이브 방식은 기존의 외부 열풍가열 방식과 달리 마이크로파가 직접 바이오 셀 내부로 침투해 물질분자와 원자 등을 진동시켜 직접 열을 발생시키는 유전체 가열이 진행된다. 이로 인해 기존의 가열방식에 비해 가열효율(heating efficiency)과 가열 율(heating rate)이 높고 이로 인해 가열시간이 단축되는 장점을 가지고 있다. 본 연구에서는 슬러지 폐기물을 바이오매스-CCS 기술(biomass-CCS technology)적용을 위한 새로운 형태의 마이크로웨이브 열적처리 기술을 개발하고자 한다. 이를 위해 마이크로웨이브 유전체가열 특성을 활용하여 탈수 슬러지를 건조-가스화 연속 일체형으로 진행하는 에너지 전환 특성을 파악하였다. 가스화 실험의 경우는 연소 전 포집 기술의 이산화탄소 분리공정에서 포집된 것을 활용하는 측면에서 이산화탄소 가스화에 대한 연구를 수행하였다. 이산화탄소 가스화 시 생성물은 가스, 촤, 타르인데 그 중 가스가 가장 많이 생성되고 잔류 탄화물인 슬러지 촤(sludge char) 그리고 중질 탄화수소인 타르의 순으로 생성되었다. 가연성 생성가스(producer gas)는 주로 수소와 일산화탄소가 생성되었고 일부 메탄과 탄화수소(THCs: C2H4,C2H6,C3H8)포함되었다.
열분해와 가스화 기술은 유기성 폐자원 또는 바이오매스로부터 에너지를 회수할 수 있는 유용한 기술로 생산된 생성가스는 연소기, 가스터빈, 엔진 등의 화석 대체연료, 연료전지 연료, 메탄올과 탄화수소의 생산, 수소 및 합성천연가스 생산 원료 등 다양한 분야에 적용이 가능하다. 그러나 열분해 및 가스화 시 발생되는 가스에는 중질 탄화수소로 이루어진 타르를 포함하고 있다. 타르는 생성가스를 이용하는 후속공정에서 해결해야 할 다양한 문제를 일으키는 요인이다. 그 대표적인 예로 가스 터빈 및 내연기관에 사용하기 전에 압축 과정을 필요한데 이 과정 중 생성가스에 포함된 타르 성분은 응축되어 관로의 막힘이나 엔진 및 터빈 내부의 손상을 가져온다. 그러므로 타르의 제거는 열분해/가스화 공정에서 필요한 가스 처리기술이다. 타르의 촉매 크래킹과 개질에 의한 생성가스 전환과 같은 고온 청정가스 기술은 가스화 공정에서 타르문제를 해결하는 가장 좋은 방법으로 알려져 있다. 귀금속 촉매는 촉매 활성이 상당히 우수하나 가격이 비싸고 탄화물 참착(coke deposition)에 의한 탈활성화(deactivation)에 대하여 매우 민감한 특성을 가지고 있어 대체 방안으로 활성탄, 석탄 촤, 바이오매스 촤 등의 탄화물이 타르 크래킹이나 개질 촉매 또는 그 지지체 적용에 대한 연구를 수행하였다. 본 연구에서는 상용 활성탄을 마이크로웨이브 탄소 수용체로 하여 벤젠 전환 특성을 파악하기 위하여 크래킹 분해와 이산화탄소-수증기 혼합 또는 각각에 대한 개질 전환에 대하여 실험을 진행하였다. 또한, 탄소 수용체의 촉매 담체 특성을 파악하기 위해 활성탄에 니켈과 철을 함침 코팅한 후 건조하여 만들어진 탄소 수용체 촉매에 대한 타르전환과 생성가스 특성을 파악하였다. 벤젠 전환은 크래킹만 하였을 경우 99%로 가장 크고 이산화탄소만 공급된 경우 98.5% 그 다음이고 이어서 이산화탄소-수증기가 동시에 공급된 경우 95-97% 그리고 수증기만 공급된 경우 94%의 순으로 작은 값을 가졌다. 촉매 탄소 수용체의 벤젠 전환은 이산화탄소 개질의 경우 니켈과 철 촉매 모드 미세하게 증가되었으며 H2/CO비는 감소되었으나 발열량은 증가되었다. 반면 수증기 개질의 경우 두 촉매 모두 벤젠 전환율이 다소 감소되었으나 H2/CO비와 발열량이 증가되었다.
바이오매스 열분해・가스화 가스, 바이오 가스의 주성분인 메탄(CH4)과 이산화탄소(CO2)는 온실가스로 이러한 가스를 양질의 연료로 전환하고 아울러 온실가스문제도 해결하고자하는 개질기술(reforming technology)에 대한 관심과 연구가 지속적으로 진행되고 있다. 개질과정에서는 고온반응 조건이 되거나 적당한 촉매의 도움이 필요하며, 최근 다양한 종류의 탄소물질(carbon material)을 이용한 CH4-CO2개질에 대한 연구가 수행중이다. 본 연구에서는 하수처리장에서 발생된 탈수 슬러지를 열분해 처리하여 생성된 슬러지 촤를 마이크로웨이브 탄소 수용체(MCR; Microwave Carbon Receptor)로 하여 개질특성을 파악하였고, 개질 대상가스 가스성상, 수용체 탄화물 종류, 개질온도와 체류시간변화에 따른 개질가스 전환특성 파악에 대한 연구를 수행하였다. 온실가스인 메탄과 이산화탄소의 탄소 수용체 마이크로웨이브 가열 개질특성을 확인하기 위해 메탄과 이산화탄소를 각각 공급한 경우와 두 가스를 혼합하여 개질을 진행하였다. 일정시간이 지나면 탄소침착에 의해 전환율의 감소가 생기는 단독가스 개질실험과 달리 이산화탄소-메탄개질의 경우 메탄의 열적 분해 개질에 의해 클리닝이 되어 지속적으로 일정한 개질 전환이 유지 되었다. 활성탄을 비교 수용체로 하여 개질을 진행한 경우 상대적으로 낮은 촉매활성으로 수소와 일산화탄소 생성량이 슬러지 촤 탄소 수용체보다 작아 생성가스 발열량이 낮았다. 개질온도와 체류시간의 경우 온도가 높을수록, 배드 체류시간이 짧을수록 탄소 수용체에서 발생되는 국부 마이크로플라즈마(Microplasma) 증가로 인해 전환율과 생성가스 농도도 증가하는 결과를 나타냈다.