검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Hybrid nanocomposites of aluminium (NHAMMCs) made from AA5052 are fabricated via stir casting route by reinforcing 12 wt% Si3N4 and 0.5 wt% of graphene for usage in aeronautical and automotive applications due to the lower density and higher strength to weight proportion. The wear characteristics of the NHAMMCs are evaluated for different axial load, rotational speed, sliding distance and sliding time based on Box-Behnken design (BBD) of response surface methodology (RSM). Orowan strengthening mechanism is identified from optical image which improves the strength of the composite. Outcomes show that with higher axial load and rotational speed, there is substantial increase in wear loss whereas with increased sliding distance and sliding time there is no considerable increase in wear loss due to the lubricating nature of the reinforced graphene particles since it has higher surface area to volume ratio. Besides, artificial intelligence approach of neuro-fuzzy (ANFIS) model is developed to predict the output responses and the results are compared with the regression model predictions. Prediction from ANFIS outplays the regression model prediction.
        6,400원
        2.
        2023.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        With a strive to develop light-weight material for automotive and aerospace applications, aluminum-based hybrid nanocomposites (AHNCs) were manufactured utilizing the compocasting approach in this study. Chopped carbon fibers (CFs) are reinforced along with different weight fractions of nanoclay (1–5%) in the matrix of AA6026 forming AHNCs. The AHNCs specimens were examined by microstructural analysis, mechanical characterization, fatigue, and corrosion strength as per ASTM guidelines. Electroless plating method is adopted for coating CFs with copper to improve the wettability with matrix. SEM pictures of manufactured composites reveal thin inter-dendritic aluminum grains with precipitate particle of eutectic at intergranular junctions, as well as nanoclay particles that have precipitated in the matrix. Tensile strength (TS) rises with inclusion of nanoclay up to a maximum of 212.46 MPa for 3% nanoclay reinforcement, after which the TS is reduced due to non-homogeneity in distribution, agglomeration and de-bonding of nanoparticles. Similarly, micro-hardness increases with addition of 3% nanoclay after which it decreases. Higher energy absorption was achieved with 3% nanoclay reinforced hybrid and a significant improvement in flexural strength was obtained. With addition of both CFs and nanoclay, the fatigue strength of the hybrid composite tends to increase due to flexible CFs and high surface area nanoclays which strengthen the grain boundaries until 3% addition. Addition of nanoclay lowers the corrosion rate with nanoclays filling the crevices and voids in the matrix.
        4,600원
        3.
        2022.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this present investigation, machinability studies on novel aluminum composite with hybrid reinforcements of copper-coated 4% carbon fibers (CFs) and 3% nanoclay in AA6026 matrix fabricated by compocasting method is performed. Step drill bit and multifaceted drill bit are used by adopting central composite design (CCD) in response surface methodology (RSM). The outcomes show that, with a rise in rotational speed surface irregularities, resultant force and material removal rate (MRR) intensifies, and with the additional rise in rotational speed, all the outputs decrease considerably. High MRR, resultant cutting force, and surface roughness are obtained with multifaceted carbide drills, compared with a step drill. Desirability function is used to maximize the MRR and minimize the resultant cutting forces considering the constant surface roughness of 3 μm. The optimal values are rotational speed of 1285 rpm, feed rate of 60 mm/min with the step drill bit, producing an MRR of 0.0439 kg/sec and a resultant cutting force of 185.818 N. The second-order empirical models are developed for outputs, which are fed into the non-traditional metaheuristic Evaporation Rate-based Water Cycle Algorithm (ER-WCA) therefore the lower objective value is achieved with step drill of 51.7421. It is found that using a step drill the machinability performance of this hybrid nanocomposite is well improved than the machining with other drill bits. This composite fulfills the norms of 2000/53/CE-ELV European environmental directives.
        5,400원