검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1

        1.
        2024.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Lithium-ion batteries are widely used in various advanced devices, including electric vehicles and energy storage devices. As the application range of lithium-ion batteries expands, it will be increasingly important to improve their gravimetric and volumetric energy density. Layer-structured oxide materials have been widely adopted as cathode materials in Li-ion batteries. Among them, LiNiO2 has attracted interest because of its high theoretical capacity, ~274 mAh g-1, assuming reversible one Li+-(de)intercalation from the structure. Presently, such layered structure cathode materials are prepared by calcination of precursors. The precursors are typically hydroxides synthesized by coprecipitation reaction. Precursors synthesized by coprecipitation reaction have a spherical morphology with a size larger than 10 μm. Spherical precursors in the several micrometer range are difficult to obtain due to the limited coprecipitation reaction time, and can lead to vigorous collisions between the precursor particles. In this study, spherical and small-sized Ni(OH)2 precursors were synthesized using a new synthesis method instead of the conventional precipitation method. The highest capacity, 170 mAh g-1, could be achieved in the temperature range of 730~760 °C. The improved capacity was confirmed to be due to the higher quality of the layered structure.
        4,000원