검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 7

        1.
        2014.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Phasianus colchicus is not only a beautiful bird but also a great value in science and under the threat of endanger. Hence, the aim of this study was to isolate the pheasant male germ cells (mGCs) and then induce them into elongated sperm-like cells in vitro. The mGCs were purified and enriched by a two-step plating method based on the different adherence velocities of mGCs and somatic cells. The percentage of the c-kit positive cells and c-kit negative cells examined by flow cytometry analysis (FCA) was 92.87% and 2.57%, respectively. Subsequently, the mGCs were induced for 48h in DMEM/F12 medium supplemented factors such as retinol acid, testosterone and bovine FSH, followed by 5 weeks in culture. We found that some elongated sperm-like cells appeared initially in vitro under inducement of stimulated factors. The elongated sperm-like cells showed in the expression of changed morphology and post-transcriptional marker such as spermatid associated (SPERT), spermatid perinuclear RNA binding protein (STRBP), round spermatid basic protein 1 (RSBN1) and SPER1L. Moreover, in DNA content identified assay, induced cells showed that the 1C DNA population markedly increased in differentiated group but it was not change in undifferentiated group. Successful in vitro differentiation of pheasant testicular germline cells into spermatids appears to offer extremely attractive potential for the conservation of endangered birds and treatment of male infertility.
        4,000원
        2.
        2014.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Selection based on phenotype in the traditional manner does not help in tracking the selected gene. Molecular genetics has revolutionized the old established breeding techniques. A new epoch of molecular markers has been acquainted for genetic improvement of livestock. This study is engaged on the neoteric molecular markers used in various fields of livestock. DNA markers are more encouraging in selecting genomes that have recombination events close to the target gene. Molecular markers rely on DNA assay and are better than the morphological and biochemical markers. In this study DNA-based molecular markers developed during the past decagons for animal genome analysis are reviewed. Mapping of molecular markers provide a framework, required for its subsequent use in the selection procedure. Molecular techniques help in the utilization of genetic variability in breeding population. At the same time livestock genomes play important role in human genomics and their role for understanding human genomics cannot be overlooked. Recently, in the epigenetic and transcriptomic studies, RNA sequencing as a part of next generation sequencing has revolutionized the approach and ongoing trends of analysis. Keeping in mind the goals, these molecular techniques can be implemented successfully by following well defined, crisp and integrated strategy.
        4,200원
        3.
        2013.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Antibodies are used for preventing several infectious diseases in food animals. Though, antibiotics can deal with infection however, their widespread usage may cause developments of resistance and can also get transferred to humans through animal products. Therefore, production of antibodies against infectious agents in the egg yolk could be an interesting alternative. The present study was conducted with a focus on producing the antibody against Escherichia coli E68 and H28 in egg yolk of laying hens, which are believed to be a cause for diarrhea and beriberi in piglets. The result received from the experiment were promising and have shown efficiency of antibody production in the range of 2-7.3% in the groups which are infected with E68 only and the one which was infected with both strains. The outcome of present research has revealed the potentiality of egg yolk in production of antibody for laying hens, could open a new approach for production of antibodies to manage diarrhea and beriberi
        4,000원
        4.
        2012.06 구독 인증기관·개인회원 무료
        Hematopoietic stem cells (HSCs) are the self‐renewing, multipotent progenitors that give rise to all types of mature blood cells. The hallmark properties of HSCs are the ability to balance self‐renewal versus differentiation cell fate decisions to provide sufficient primitive cells to sustain haematopoiesis, while generating more mature cells with specialized capacities. In the present experiment, we optimized the techniques for isolation and identification of hematopoietic stem cells from cow peripheral blood. The objective of this study was to optimize the more accurate methodology for separation of mononuclear cells (MNCs) from peripheral blood and identification of HSCs by using a specific cell surface marker i.e. CD34. A total 10 peripheral blood samples were collected from Holstein dairy cows from jugular vein. We used Ficoll 400 in different concentrations from 1 to 12% and Ficollpaque Plus (1.077 g/ml) at different centrifugation speed and time. After Giemsa staining, we found more than 98% recovery of monocytes with Ficollpaque Plus (1.077 g/ml). It was demonstrated that Ficollpaque Plus (1.077 g/ml) and centrifugation at 400xg for 30 min is the best method for separation of MNCs from bovine peripheral blood. Separated MNCs were immediately subjected for magnetic activated cell sorting (MACS) by using CD34 microbead kit. HSCs (CD34+ cells) recovery was 0.307% of peripheral blood. Peripheral blood MNCs and CD34+ cells were morphologically characterized by Giemsa staining. CD34+ cells were also confirmed by immunochemistry using FITC conjugated CD34 antibodies. HSCs were also confirmed by progenitor assay including burst forming unit‐erythroid (BFU‐E), colony forming cells‐ granulocyte (CFC‐G), colony forming cells‐ macrophage (CFC‐M), colony forming cells‐ granulocyte macrophage (CFU‐GM) and colony forming cells‐ granulocyte erythroid macrophage monocyte (CFCGEMM) on Methocult 4435.
        5.
        2017.08 서비스 종료(열람 제한)
        Bovine mammalian gland has biopotential in therapeutic protein production and could be used as a model in further lactation researches. In this study, we have isolated bovine mammary gland-derived epithelial cells (BMECs) from Korean Holstein dairy cattle and themselves show differential dynamic ability in in-vitro culture. BMECs enables to form lobulo-alveolar structure, express milk production related gene. Functional studies indicated that BMECs secret exogeneous antibacterial fragment-Bovine Lactoferricin B (bLfcin-B), which is inserted in PiggyBac system, and this bioactive fragment inhibits the growths of Escherichia coli and Staphylococcus aureus. These data demonstrated that BMECs open new scope in either bioactive fragment, heading to prevent the spread of mastitis or post-mastitis damage in dairy graze and could be an ideal bioreactor for antibacterial proteins.
        6.
        2014.12 KCI 등재 서비스 종료(열람 제한)
        Osteosarcoma (OS) is one of the most common malignant primary bone tumors and NF-κB appears to play a causative role, but the mechanisms are poorly understood. OS is one of the pleomorphic, highly metastasized and invasive neoplasm which is capable to generate osteoid, osteoclast and osteoblast matrix. Its high incidence has been reported in adolescent and children. Cell signal cascade is the pivotal functional mechanism acquired during the differentiation, proliferation, growth and survival of the cells in neoplasm including OS. The major limitation to the success of chemotherapy in OS is the development of multidrug resistance (MDR). Answers to all such queries might come from the knock-in experiments in which the combined approach of miRNAs with NF-κB pathway is put into use. Abnormal miRNAs can modulate several epigenetical switching as a hallmark of number of diseases via different cell signaling. Studies on miRNAs have opened up the new avenues for both the diagnosis and treatment of cancers including OS. Collectively, through the present study an attempt has been made to establish a new systematic approach for the investigation of microRNAs, biophysiological factors and their target pairs with NF-κB to ameliorate oncogenesis with the “bridge between miRNAs and NF- κB”. The application of NF-κB inhibitors in combination with miRNAs is expected to result in a more efficient killing of the cancer stem cells and a slower or less likely recurrence of cancer.
        7.
        2013.08 서비스 종료(열람 제한)
        Mesenchymal stem cells (MSCs) are considered to be attractive approaching in gene or drug delivery for cancer therapeutic strategies. In this study, the ability and feasibility of human bone marrow derived MSCs expressing the cytosine deaminase (CD)/5-Fluorocytosin (5-FC) prodrug was evaluated to target human osteosarcoma cell line Cal-72. At first, the fibroblast-like cells were successfully obtained from human bone marrow and demonstrated that they contained full of stem characteristics by the ability of differentiation into adipocyte/osteocyte and expression of typical mesenchymal markers CD90, CD44, while negative for CD34 and CD133 markers. We established the stable CD-expressing MSCs cell line (CD-MSCs) by transfection of pEGFP-C3 containing cytosine deaminase::uracil phos-phoribosyltransferase (CD::UPRT) gene into MSCs, and confirmed that the manipulated MSCs still remained full characteristics of multipotent cells and shown migration toward human osteosarcoma cancer cells Cal-72 as high as origin MSCs. Based on bystander effect, the therapeutic CD-MSCs significantly augmented the cytotoxicity on cancer cell Cal72 in either direct co-culture or conditioned medium in the presence of 5-FC. Moreover, in osteosarcoma cancer- bearing mice, the therapeutic CD/5-FC MSCs showed the inhibition of tumor growth compared with control mice which was s.c injected with only Cal72. Our findings suggest that these therapeutic CD-MSCs may be suitable and viable cellular vehicles for targeting human osteosarcoma cancer.