It is argued that the key task in understanding magnetic fields in the cosmos is to comprehend the origin of their order or coherence over large length scales in galaxies. Obtaining magnetic fields can be done in stars, whose lifetime is usually 1010 rotations, while galactic disks have approximately 20 to 50 rotations in their lifetime since the last major merger, which established the present day gaseous disk. Disorder in the galactic magnetic fields is injected on the disk time scale of about 30 million years, about a tenth of the rotation period, so after one half rotation already it should become completely disordered. Therefore whatever mechanism Nature is using, it must compete with such a short time scale, to keep order in its house. This is the focal quest.
The uniquely large dimensions of Giant radio galaxies (GRGs) make it possible to probe for stringent limits on total energy content, Faraday rotation, Alfven speeds, particle transport and radiation loss times. All of these quantities are more stringently limited or specified for GRG's than in more 'normal' FRII radio sources. I discuss how both global and detailed analyses of GRG's lead to constraints on the CR electron acceleration mechanisms in GRG's and by extension in all FRII radio sources. The properties of GRG's appear to rule out large scale Fermi-type shock acceleration. The plasma parameters in these systems set up conditions that are favorable for magnetic reconnection, or some other very efficient process of conversion of magnetic to particle energy. We conclude that whatever mechanism operates in GRG's is probably the primary extragalactic CR acceleration mechanism in the Universe.