검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2014.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Pyrolized fuel oil (PFO) was reformed by novel electron beam (E-beam) radiation, and the elemental composition, chemical bonds, average molecular weight, solubility, softening point, yields, and density of the modified patches were characterized. These properties of modified pitch were dependent on the reforming method (heat or E-beam radiation treatment) and absorbed dose. Aromaticity (Fa), average molecular weight, solubility, softening point, and density increased in proportion to the absorbed dose of E-beam radiation, with the exception of the highest absorbed dose, due to modification by free radical polymerization and the powerful energy intensity of E-beam treatment. The H/C ratio and yield exhibited the opposite trend for the same reason. These results indicate that novel E-beam radiation reforming is suitable for the preparation of aromatic pitch with a high β-resin content.
        4,000원
        2.
        2014.07 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A hierarchical pore structured novolac-type phenol based-activated carbon with micropores and mesopores was fabricated. Physical activation using a sacrificialsilicon dioxide (SiO2) template and chemical activation using potassium hydroxide (KOH) were employed to pre-pare these materials. The morphology of the well-developed pore structure was character-ized using field-emissionscanning electron microscopy. The novolac-type phenol-based activated carbon retained hierarchical pores (micropores and mesopores); it exhibited high Brunauer-Emmett-Teller specificsurface areas and hierarchical pore size distributions. The hierarchical pore novolac-type phenol-based activated carbon was used as an electrode in electric double-layer capacitors, and the specificcapacitance and the retained capacitance ratio were measured. The specificcapacitances and the retained capacitance ratio were en-hanced, depending on the SiO2 concentration in the material. This result is attributed to the hierarchical pore structure of the novolac-type phenol-based activated carbon.
        4,000원