The purpose of this study is to develop a method to evaluate solubility parameter interactions of cosmetic ingredients in formulations. This experimentation relates to the fabrication of new multi-layer cleansing oil which can remove make-up products such as lipstick, foundation, mascara, eye shadow, etc., and also can wash away dirt and sebum from the skin just in one stage process. Solubility parameter and specific gravity of various cosmetic ingredients are measured to explain the cleanliness of interface, detergency of make-up cosmetics on the skin surface. The results suggest that it is possible for cosmetic chemists to use solubility parameter of cosmetic materials for fabrication of new formulation of 3-layer cleansing oil.
Liquid crystalline phases were formed from acylglutamate; polyglyceryl-10 myristate and glycerine mixture and they were used as a base material for preparing an O/W emulsion. When an oil phase is added into the liquid crystalline phases, it was inserted into the dispersed liquid crystal droplets rather than stayed outside the liquid crystals, which can be known by the fact that the size of liquid crystal droplets increases with the increasing oil phase content. Along with the increase in the droplet size, the complex modulus increases from 100 to 350 pascals and the loss angle decreases from 60 to 24 degrees, from which it can be known that the increase in the internal phase volume results in the increase in the elastic property of oil in liquid crystalline-phases (O/LC). When the water phase was lastly added into the O/LC phase, the emulsification occurred to form a O/W emulsion and the averaged particle size of the O/W emulsion changes from 22.5nm to 538nm with the addition of water phase. The results from the droplet size measurements and stability tests under accelerated conditions such as high temperature show that the obtained O/W emulsion is very consistent with time.