검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2014.12 구독 인증기관 무료, 개인회원 유료
        Fluoride has been accepted as an important material for oral health and is widely used to prevent dental caries in dentistry. However, its safety is still questioned by some. Autophagy has been implicated in cancer cell survival and death, and may play an important role in oral cancer. This study was undertaken to examine whether sodium fluoride (NaF) modulates autophagy in SCC25 human tongue squamous cell carcinoma cells. NaF demonstrated anticancer activity via autophagic and apoptotic cell death. Autophagic vacuoles were detectable using observed to form by monodansylcadaverine (MDC) and acridine orange (AO). Analysis of NaF-treated SCC25 cells for the presence of biochemical markers revealed direct effects on the conversion of LC-3II, degradation of p62/SQSTM1, cleavage formation of ATG5 and Beclin-1, and caspase activation. NaF-induced cell death was suppressed by the autophagy inhibitor 3-methyladenine (3-MA). NaF-induced autophagy was confirmed as a pro-death signal in SCC25 cells. These results implicate NaF as a novel anticancer compound for oral cancer therapy.
        4,000원
        2.
        2014.06 구독 인증기관 무료, 개인회원 유료
        Chios Gum Mastic (CGM) is a natural resin extracted from the leaves of Pistacia lentiscus, a plant endemic to the Greek island of Chios. It has been used by traditional healers, and it has antibacterial, antifungal properties, and therapeutic benefits for the skin. The CGM reduces the formation of dental plaque and bacterial growth in oral saliva, and recent studies have demonstrated the role of antioxidant activity of CGM. Although CGM has been widely investigated, its protective effect against oxidative-damage to keratinocytes, as well as the relationship between CGM and autophagy, has not been investigated. The aim of this study was to assess the protective effect of CGM against H2O2-induced oxidative stress and to evaluate the autophagic features induced by CGM in human keratinocytes. The pretreatment with CGM significantly reduced apoptosis in H2O2-exposed HaCaT cells. It promoted the degradation of caspase-3, caspase-8, and caspase-9; and it induced the formation of the processed PARP. The treatment with CGM caused an increase in vesicle formation compared to control group. The level of p62 was reduced and the conversion of LC3-I to LC3-II was increased in CGM treated HaCaT cells. Also, the treatment with CGM increased cleavage of ATG5-ATG12 complex. In summary, CGM helps the cells to survive under stressful conditions by preventing apoptosis and enhancing autophagy. Besides, the present investigation provides evidence to support the antioxidant potential of CGM in vitro and opens up a new horizon for future experiments.
        4,000원