Foraging preference in prey size and type is influenced by a variety of factors including energy requirements, season-dependent food availability, and social context (e.g. competition and predation risk). The oriental stork (Ciconia boyciana) is known as a wetland forager that inhabits human-managed wetlands such as paddy fields while breeding. However, it became an internationally endangered species. Information on its foraging preference is anticipated to play an important role in maintaining storks in captivity with a variety of food types as well as managing the food availability in foraging habitats of reintroduction sites. Specifically, the present study investigated the patterns of foraging preference of the subject in captivity as a partial study of the prerelease training and habitat management programs prior to reintroduction. The observations of foraging behavior of breeding adult storks included foraging preference in prey size (i.e. small, less than 6 cm, vs. large, larger than 6 cm, mudfish) during the incubation and nestling periods (March to April of 2009~2010) and prey type (i.e. mudfish, Misgurnus spp., crickets, Gryllus spp., and earthworms, Lumbricus spp.) during the postnesting period (October of 2009~2010). Our results indicated that storks in captivity not only preferred large to small mudfish independent of breeding stage but also preferred mudfish to crickets and earthworms. To our knowledge, captive storks did not appear to be constrained by providing offspring with various mudfish size and were likely dependent on mudfish, suggesting that a mudfish population in paddy fields should be monitored and managed for the main food resource for breeding storks prior to reintroduction.
실제증발산 자료를 융합하기 위한 Modified Kling-Gupta efficiency Fusion (KGF)방법을 제시하였고, 인공위성 및 재분석 증발산 자료인 Global Land Data Assimilation System (GLDAS), Global Land Evaporation Amsterdam Model (GLEAM), MODIS Global Evapotranspiration Project (MOD16)를 활용하여 Simple Taylor skill’s Score (STS)와 비교하였다. 한반도와 중국의 세가지 land cover type(i.e., cropland, grassland, forest)을 가진 flux tower에서 비교 검증을 실시하였다. 실제증발산의 융합 방법인 STS와 KGF로 계산된 가중치의 결과를 확인하면, cropland와 grassland에서 재분석 자료(GLDAS, GLEAM)가 높은 가중치 영향을 나타내지만, forest에서 융합 방법에 따라 가중치 영향이 다르게 나타났다. 전반적으로 실제증발산 융합 방법 적용 결과의 비교에서는 cropland에서는 융합에 사용된 자료에 비하여 높은 개선이 이뤄지지 않았지만, grassland와 forest 에서는 개선이 이뤄졌다. 두 방법 중 KGF의 결과가 STS의 결과에 비하여 약간 개선되는 결과를 나타내었다
본 연구에서는 인공위성 및 재분석 자료인 Global Land Data Assimilation System (GLDAS), Global Land Evaporation Amsterdam Model (GLEAM), MOD16의 실제증발산량 산출물을 활용하여 한국수자원조사기술원(Korea Institute of Hydrological Survey, KIHS)에서 관리하고 있는 청미천(cheongmicheon farmland site, CFK)과 설마천(seolmacheon site, SMK) flux tower에서 검증하였고, Triple collocation (TC) 방 법을 활용하여 자료간의 불확실성 및 상관성분석을 수행하였다. 플럭스타워와의 검증 결과에서는 전반적으로 GLEAM>GLDAS>MOD16순으로 좋은 결과를 나타내었으며, 세가지 산출물의 조합(S1: flux tower vs. GLDAS vs. MOD16, S2: flux tower vs. GLDAS vs. GLEAM, S3: flux tower vs. GLEAM vs. MOD16)을 통한 TC 결과에서는 청미천(설마천)에서 GLEAM>GLDAS>MOD16>flux tower (GLDAS>GLEAM>MOD16>flux tower)순으로 좋은 결과를 나타내었다. TC 분석 결과에서 Flux tower의 error variance와 correlation coefficient가 상대적으로 좋은 결과를 나타내지 못하였으므로, 한반도 지역에서 인공위성과 재분석 자료(GLDAS vs. GLEAM vs. MOD16)만을 활용하여 TC를 적용하였다. 그 결과, GLDAS 와 GLEAM이 한반도 영역에서 낮은 error variance 와 높은 correlation coefficient를 나타낸 반면, MOD16의 경우, 농지에서 낮은 correlation coefficient과 높은 error variance를 나타내었다.