검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        1.
        2012.09 KCI 등재 구독 인증기관·개인회원 무료
        Polycyclic aromatic hydrocarbons (PAHs) in Galactic planetary nebulae (PNe) are investigated by means of the unidentified infrared (UIR) bands. Continuous near- to mid-infrared spectra of PNe are obtained with the AKARI/IRC and the Spitzer/IRS. All 19 PNe in the present study show prominent dust emissions and we investigate the variation in the intensity ratios among the UIR bands. The ionization fraction and the size distribution of PAHs in PNe are derived using the UIR band ratios. We find that the ionization fraction of PAHs in PNe is around 0.0-0.6 and that small PAHs are scarce. The present result indicates a systematic trend of the 3.4 μm aliphatic feature to become weak as the PAH ionization fraction increases.
        2.
        2012.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We have collected dozens of mid-infrared spectra showing UIR bands from diffuse Galactic emitting regions with the AKARI's Infrared Camera (IRC) onboard AKARI, as part of the ISMGN Mission Program. The datasets cover various directions in the inner Galactic Plane ( |l| < 70 deg), in the outer Galactic Plane ( |l| > 70 deg), and in the off-Plane ( |b| > 2 deg). The variations in the UIR band ratios are examined in terms of the radiation environments judged from the far-infrared ( 50 − 170 μm ) spectral energy distribution (SED) made with AKARI/FIS All Sky Survey data at each slit position where mid-IR spectra were obtained. We have found that the band ratios of 6.2 μm / 11.2 μm and 7.7 μm / 11.2 μm toward the inner Galaxy are systematically higher than those toward the outer Galaxy and off the Galactic plane. Likely causes of the variations in properties of UIR bands in diffuse emission on a Galactic scale are discussed in this paper.
        3,000원
        3.
        2012.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We present the results of the near-infrared (NIR) to mid-infrared (MIR) slit spectroscopic observations of the diffuse emission toward nine positions in the nearby irregular galaxy Large Magellanic Cloud (LMC) with the Infrared Camera (IRC) on board AKARI. The unique characteristic of AKARI/IRC provides a great opportunity to analyze variations in the unidentified infrared (UIR) bands based on continuous spectra from 2.5 to 13.4 μm of the same slit area. The observed variation of I3.3 / I11.3 suggests destruction of small-sized UIR band carriers, polycyclic aromatic hydrocarbons (PAHs) in harsh environments. This result demonstrates that the UIR 3.3 μm band provides us powerful information on the excitation conditions and/or the size distribution of PAHs, which is of importance for understanding the evolutionary process of hydrocarbon grains in the Universe. It also suggests a new diagnostic diagram of two band ratios, such as I3.3 / I11.3 versus I7.7 / I11.3 , for the interstellar radiation conditions. We discuss on the applicability of the diagnostic diagram to other astronomical objects, comparing the LMC results with those observed in other galaxies such as NGC 6946, NGC 1313, and M51.
        3,000원
        4.
        2012.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We show how the rotation emission from isolated interstellar Polycyclic Aromatic Hydrocarbons (PAHs) can explain the so-called anomalous microwave emission (AME). AME has been discovered in the last decade as microwave interstellar emission (10 to 70 GHz) that is in excess compared to the classical emission processes: thermal dust, free-free and synchrotron. The PAHs are the interstellar planar nano-carbons responsible for the near infrared emission bands in the 3 to 15 micron range. Theoretical studies show that under the physical conditions of the interstellar medium (radiation and density) the PAHs adopt supra-thermal rotation velocities, and consequently they are responsible for emission in the microwave range. The first results from the PLANCK mission unexpectedly showed that the AME is not only emitted by specific galactic interstellar clouds, but it is present throughout the galactic plane, and is particularly strong in the cold molecular gas. The comparison of theory and observations shows that the measured emission is fully consistent with rotation emission from interstellar PAHs. We draw the main lines of our PLANCK-AKARI collaborative program which intends to progress on this question by direct comparison of the near infrared (AKARI) and microwave (PLANCK) emissions of the galactic plane.
        4,000원