검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2014.07 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Amorphous agglomerates of carbon nanospheres (CNS) with a diameter range of 10-50 nm were synthesized using the solution combustion method. High-resolution transmission elec-tron microscopy (HRTEM) revealed a densely packed high surface area of SP2-hybridized carbon; however, there were no crystalline structural components, as can be seen from the scanning electron microscopy, HRTEM, X-ray diffraction, Raman spectroscopy, and ther-mal gravimetric analyses. Electrochemical and thermo catalytic decomposition study results show that the material can be used as a potential electrode candidate for the fabrication of energy storage devices and also for the production of free hydrogen if such devices are used in a fluidized bed reactor loaded with the as-prepared CNS as the catalyst bed.
        4,000원
        2.
        2014.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the effect of stacking sequence on the flexural and fracture properties of carbon/basalt/epoxy hybrid composites was investigated. Two types of carbon/basalt/epoxy hybrid composites with a sandwich form were fabricated: basalt skin-carbon core (BSCC) composites and carbon skin-basalt core (CSBC) composites. Fracture tests were conducted and the fracture surfaces of the carbon/basalt/epoxy hybrid composites were then examined using scanning electron microscopy (SEM). The results showed that the flexural strength and flexural modulus of the CSBC specimen respectively were ~32% and ~245% greater than those of the BSCC specimen. However, the interlaminar fracture toughness of the CSBC specimen was ~10% smaller than that of the BSCC specimen. SEM results on the fracture surface showed that matrix cracking is a dominant fracture mechanism for the CSBC specimen while interfacial debonding between fibers and epoxy resin is a dominant fracture process for the BSCC specimen.
        3,000원