검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2001.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We have constructed a non-spherical model for the hot oxygen corona of Mars by including the effects of planetary rotation and diurnal variation of the Martian ionosphere. Exospheric oxygen densities are calculated by integrating ensemble of ballistic and escaping oxygen atoms from the exobase over the entire planet. The hot oxygen atoms are produced by dissociative recombination of O+2, the major ion in the Martian ionosphere. The densities of hot oxygen atoms at the exobase are estimated from electron densities which have been measured to vary with solar zenith angle. Our model shows that the density difference of hot oxygen atoms between noon and terminator is about two orders of magnitude near the exobase, but reduces abruptly around altitudes of 2000 km due to lateral transport. The diurnal variation of hot oxygen densities remains significant up to the altitude of 10000 km. The diurnal variation of the hot oxygen corona should thus be considered when the upcoming Nozomi measurements are analyzed. The non-spherical model of the hot oxy-gen corona may contribute to building sophisticate solar wind interaction models and thus result in more accurate escaping rate of oxygens from Mars.
        4,000원
        2.
        2000.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We investigate the effects of planetary rotation on the exospheres of the earth and Mars with simple collisionless models. We develope a numerical code that computes exospheric densities by integrating velocity functions at the exobase with a 10 point Gauss method. It is assumed in the model that atoms above the exobase altitude move collisionlessly on an orbit under the planet's gravity. Temperatures and densities at the exobase over the globe are adopted from MSIS-86 for the earth and from Bougher et al's MTGCM for Mars. For both the earth and Mars, the rotation affects the exospheric density distribution significantly in two ways: (1) the variation of the exospheric density distribution is shifted toward the rotational direction with respect to the variation at the exobase, (2) the exospheric densities in general increase over the non-rotating case. We find that the rotational effects are more significant for lower thermospheric temperatures. Both the enhancement of densities and shift of the exospheric distribution due to rotation have not been considered in previous models of Martian exosphere. Our non-spherical distribution with the rotational effects should contribute to refining the hot oxygen corona models of Mars which so far assume simple geometry. Our model will also help in analyzing exospheric data to be measured by the upcoming Nozomi mission to Mars.
        4,000원