검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        1.
        2010.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Carbon supported electrocatalysts are commonly used as electrode materials for polymer electrolyte membrane fuel cells(PEMFCs). These kinds of electrocatalysts provide large surface area and sufficient electrical conductivity. The support of typical PEM fuel cell catalysts has been a traditional conductive type of carbon black. However, even though the carbon particles conduct electrons, there is still significant portion of Pt that is isolated from the external circuit and the PEM, resulting in a low Pt utilization. Herein, new types of carbon materials to effectively utilize the Pt catalyst are being evaluated. Carbon nanofiber/activated carbon fiber (CNF/ACF) composite with multifunctional surfaces were prepared through catalytic growth of CNFs on ACFs. Nickel nitrate was used as a precursor of the catalyst to synthesize carbon nanofibers(CNFs). CNFs were synthesized by pyrolysising CH4 using catalysts dispersed in acetone and ACF(activated carbon fiber). The as-prepared samples were characterized with transmission electron microscopy(TEM), scanning electron microscopy(SEM). In TEM image, carbon nanofibers were synthesized on the ACF to form a three-dimensional network. Pt/CNF/ACF was employed as a catalyst for PEMFC. As the ratio of prepared catalyst to commercial catalyst was changed from 0 to 50%, the performance of the mixture of 30 wt% of Pt/CNF/ACF and 70wt% of Pt/C commercial catalyst showed better perfromance than that of 100% commercial catalyst. The unique structure of CNF can supply the significant site for the stabilization of Pt particles. CNF/ACF is expected to be promising support to improve the performance in PEMFC.
        3,000원
        2.
        2008.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The studies on integrated operation of fuel cell with fuel processor are very essential prior to its commercialization. In this study, Polymer Electrolyte Membrane Fuel Cell (PEMFC) was operated with a fuel processor, which is mainly composed of two parts, methanol steam reforming reaction and preferential oxidation (PROX). In fuel processor, ICI 33-5 (CuO 50%, ZnO 33%, Al2O3 8%, BET surface area: 66 m2g-1) catalyst and CuO-CeO2 catalyst were used for methanol steam reforming, preferential oxidation (PROX) respectively. PEMFC was operated by hydrogen fuel generated from fuel processor. The resulting gas from PROX reactor is used to operate PEMFC equipped with our prepared anode and cathode catalyst. PtRu/C catalyst gives more tolerance to CO.
        4,000원
        3.
        2001.04 서비스 종료(열람 제한)
        Growth and yield of licorice were investigated under the different conditions of photoperiod and shading in order to establish its cultural practice for the domestic production with the aim to substitute the import. The photoperiod was adjusted to 8,10, and 12 h by shielding plants from the light with blackout curtain. Large seedlings(11-20g) appeared to be affected by photoperiod since around 65 days. Most of growth parameters, including plant height, number of leaf, fresh and dry weight of plant and root, were the highest in 12 h photoperiod among all the photoperiod levels, excepting stem diameter which was the highest in 10 h photoperiod(4.5mm). Each photoperiod was similar to each other in root length and diameter. Small seedlings(4-l0g) showed a similar trend to large seedlings. The results from field photoperiod experiment demonstrated that 12 h photoperiod was also the best among three photoperiod treatments in plant height, stem diameter, number of leaf, root length, fresh and dry weight of plant and root. The effect of shading was tested under the three levels of control (0%), half-shading (55%), and full shading (90%). Shading remarkably suppressed the growth and yield, compared to no-shading. Although plant height and root length were little affected by the shading, stem and root diameters were heavily reduced.
        4.
        2001.04 서비스 종료(열람 제한)
        Growth and yield of licorice were investigated under the different conditions of ridge height, planting density, and irrigation in order to establish its cultural practices for the domestic production with the aim to substitute the import. Seedlings were grown under low ridge(20cm) and high ridge(40cm) in low density plot(60×30cm) and high density plot(40×30cm), respectively. The low ridge cultivation of large seedlings increased plant height and root length under low density, and stem and root diameter under high density compared to the high ridge cultivation. In the high ridge cultivation, high density plot was 1.1 to 1.3 times in plant height, root length, stem and root diameter as high as low density one. Fresh and dry weight of plant and root in high ridge were 1.3 to 1.5 times as high as those in low one. The growth of small seedlings(4~10g) were generally poor compared to that of large seedlings. High density plot in low ridge showed the good growth characteristics including plant height, root length, stem and root diameter, and number of branch. High density plot was 1.4 to 1.6 times in fresh and dry weight of plant and root as high as low density plot. In the seasonal changes of growth under various irrigation regimes, the twice irrigation a day produced the more number of leaf than the other regimes since around 46 days after transplanting. The former irrigation resulted in 1.2 to 1.4 times in plant height as long as the other irrigations around 26 days after transplanting and then the difference was increased to 1.6 to 2.0 times around 64 days after transplanting. Under the twice irrigation a day, plant height, root length, stem diameter, root diameter, number of leaf, fresh plant weight, dry plant weight, fresh root weight, dry root weight were 1.6 to 2.0, 1.1, 1.2 to 1.6, 1.3 to 1.8, 1.9 to 2.7, 1.7 to 8.0, 1.6 to 2.8,2.0 to 3.0, 1.6 to 2.7 times as high as those under the other irrigation regimes, respectively.