검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1

        1.
        2023.05 구독 인증기관·개인회원 무료
        Integrity evaluation scheme for Spent Fuel (SF) dry storage has been developed under transportation failure modes. This method especially considered the degradation characteristics of Spent Fuel (SF) during dry storage such as radial and circumferential hydride content, hydride volume fraction, oxide thickness, etc. Hydride and zircaloy cladding are considered as material composite system, using correlation models related to material properties. Critical Strain Energy Density (CSED) is compared with Strain Energy Density (SED), to evaluate cladding integrity. CSED serves as material characteristics, while SED can be considered as boundary condition. To calculate the CSED of cladding in the lateral failure mode, circumferential hydride concentration is used. SED is calculated considering both the bending moment and axial load. On the other hand, in the longitudinal failure case, fuel rod temperature, internal pressure, hoop stress, radial hydride concentration is used to calculate CSED. And pinch force (contact) was considered to evaluate SED. Model validations were conducted by comparing hot cell SF test and existing validated evaluation results. To separately handle normal transportation conditions from hypothetical accident conditions, SED according to stress-strain analysis results was separated into elastic and plastic regions. As a result of applying this scheme for 14×14 SF, failure probability of normal condition was zero, which is the similar result with DOE and same with EPRI. Regarding accident condition, lateral case showed similar result, but longitudinal case showed different but reasonable result, which was due to the different analysis conditions. The proposed methodology which was indigenously developed through this study is named as K-method.