Perennial need for bactericides requires cost-effective nanomaterials with strong antibacterial activities even in the absence of external irradiation. Hence, in this work, we have synthesized f-CFT (fluorinated TiO2- doped, glycine-functionalized MWCNTs) and have studied its antibacterial activities. Both gram-negative and gram-positive bacteria were analyzed in the absence of photo-activation. Zone of inhibition of 15 mm for S. aureus, and 11 mm for P. aeruginosa was observed for f-CFT owing to the synergistic bactericidal properties of functionalized MWCNTs, fluorine and nano-TiO2. Anatase phase TiO2 with average crystallite size as 35 nm was observed in XRD. Scanning electron microscopic images showed uniform mixed cubic structures. Hydroxyl groups observed in FT-IR along with the glycine MWCNTs interface aid the inhibition of bacterial growth even in the absence of photo activation. A desired higher gram-positive bacterial inhibition opens new gates for better antibacterial agents.