검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2022.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Thermal management is significant to maintain the reliability and durability of electronic devices. Heat can be dissipated using thermal interface materials (TIMs) comprised of thermally conductive polymers and fillers. Furthermore, it is important to enhance the thermal conductivity of TIMs through the formation of a heat transfer pathway. This paper reports a polymer composite containing vertically aligned electrochemically exfoliated graphite (EEG). We modify the EEG via edge selective oxidation to decorate the surface with iron oxides and enhance the dispersibility of EEG in polymer resin. During the heat treatment and curing process, a magnetic field is applied to the polymer composites to align the iron oxide decorated EEG. The resulting polymer composite containing 25 wt% of filler has a remarkable thermal conductivity of 1.10 W m− 1 K− 1 after magnetic orientation. These results demonstrate that TIM can be designed with a small amount of filler by magnetic alignment to form an efficient heat transfer pathway.
        4,000원
        2.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Conductive carbon cloths (CCs) have been great attention as a promising current collector for flexible supercapacitors that supply power to portable and wearable electronics. However, the hydrophobic surface and weak adhesion with active materials has limited to be adopted as the binder-free and flexible electrode with mechanical/electrochemical stability. In this work, we demonstrate preparation of binder-free and flexible electrodes based on polyaniline (PANI) on carbon cloth. Polydopamine (PDA) layer are used to impart hydrophilicity, leading to uniform growth of PANI on the hydrophobic surface of carbon. Furthermore, PDA layer improves adhesion strength between PANI and carbon substrates, which allows for superior mechanical stability under ultrasonic condition. PANI-based flexible electrode shows high areal capacitance (160.8 mF cm− 2 at 0.5 mA cm− 2), good rate capability (71.1% even at high current density of 10 mA cm− 2), and long-term cycling stability (82.6% capacitance retention after 1500 cycles). Furthermore, a quasi-solid-state flexible supercapacitor reveals remarkable mechanical flexibility and durability, with superior capacitance retention (~ 100%) in bent state and after repetitive 1000 cycles.
        4,000원