In oocytes from different species, MPF, a complex of Cdk1 and cyclin B, is the master regulator of cell cycle. The activity of MPF is regulated by the phosphorylations mediated by Wee1B kinase and Cdc25B phosphatase. Although a regulation of MPF activity by these inhibitory phosphorylations are well established, a dogma in the cell cycle is that MPF activity is regulated by the dynamics of cyclin B during the metaphase II (MII) arrest (also known as CSF arrest). However, growing evidences suggest that Wee1B-mediated Cdk1 phosphorylation is also critical to trigger the progression of cell cycle during the onset of anaphase. Therefore, in the present study, we investigated the role of Cdc25B phosphatase during MII arrest. Cdc25B is present in MII arrested oocytes as a hyperphosphorylated form and disruption of its function either by antibody or siRNA injection induces the progression of cell cycle to interphase. Moreover, the hyperphosphorylated form, which has been known as an active form of Cdc25B, is dephosphorylated during the anaphase onset. Interestingly, this dephosphrylation occurred ahead of cyclin B degradation. Conversely, overexpression of Cdc25B prevents metaphase to anaphase transition induced by calcium stimulation. Therefore, our findings provide novel paradigm in cell cycle that MPF activity during metaphase arrest is regulated by the balance between Cdk1 inhibitory kinases, Wee1, and the counteracting phosphatases, Cdc25. When cells exit from metaphase, Cdc25 is inactivated and Wee1 is reactivated and thereby Cdk1 kinase activity is rapidly and transiently decreased. This initial decrease of Cdk1 activity is further promoted by the proteolytic degradation of cyclin B, which ensures irreversible progression of cell cycle to interphase. Thus, the concerted effort of phosphorylation/dephosphorylation of Cdk1 and synthesis/degradation of cyclin B play roles in fine-tuning the activity of Cdk1 during metaphase to anaphase transition.