Along the increases of incineration bottom ashes emitted from the municipal solid waste incinerator, the issues, such as increased treatment costs, environmental problems and lack of land area for incineration treatment facility have raised. Therefore, this study was performed to analyze the incineration bottom ash to seek how to recycle the resources. The particles of bottom ash discharged as municipal solid wastes are not even and composed of inorganic substances such as iron and non-metals; in this study, therefore, the bottom ash are used as the basic data for the purpose of resource recycle. In this study, the waste incineration bottom ash emitted from the incineration treatment facility located in city C were analyzed. About 100 tons of municipal solid waste are incinerated in this facility on a daily basis. The particle size, XRF, TGA and ICP were analyzed for bottom ash. A LA-950(Laser Scattering Particle Size Analyzer) was used to perform a particle size analysis and as a result, the particle diameter of a large range was distributed and the particle diameter was shown to be wide so not evenly distributed. The distribution of particle diameter for each sample was shown to be inconsistent. XRF used an EDX-750 (Shimazu) to analyze the chemical components and as a result, the key components contained in the bottom ash included CO2, CaO, SiO2, Al2O3, B2O3, etc. The analysis revealed that CaO contained to be lower than other area. TGA / DSC 1 / 1600 LF(Mettler-Toledo AG) were used to analyze TGA and the heating rate of 10℃/min was applied up to the maximum temperature 1200℃. As a result, the sample of incineration bottom ash showed its significant reaction at around 700℃. In general, when temperature of bottom ash starts raising, the moisture started to evaporate at around 100℃ while a significant decline is observed in weight. However in this study, no significant change was observed around 100℃ followed by the pre-processed and bottom ash. ICP used 820 ICP-MS (Bruker, Germany) to analyze the heavy metal - As, Cd, Cr, Cu, Hg and Pb. 3 different bottom ash were divided into 3 samples and as a result, the average concentration of each substance was analyzed as As 0.0049ppm and Cu 0.006ppm, whereas the concentrations of Cd, Cr, Hg and Pb were observed to be less than the quantization limit; therefore, the concentrations of all 6 items were shown to be less than the hazardous level of the specified wastes.