검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 22

        21.
        2013.04 KCI 등재 서비스 종료(열람 제한)
        Linear type SFL (spent fluorescent lamp) can be classified by 3-banded lamp and general lamp. Linear type SFL is separated by the end-cutting technique to examine the distribution of mercury in the major components such as base cap, glass part and phosphor powder. In this study, the concentration of mercury is analyzed by DMA (Direct Mercury Analysis) method for major components in linear type SFL. From the results of mercury distribution for 3 companies, the concentration of mercury in 3-banded lamp is less than that in general lamp. And phosphor powder has greater than 80% of total mercury amount in SFL and the mercury concentration in phosphor powder is measured between 1,250 ppm and 1,740 ppm. The mercury concentration in phosphor powder can be changed by the type of lamp, company, and period of usage. KET and TCLP are carried out for phosphor powder, glass, and base cap to estimate the hazardous characteristic. From the results of KET and TCLP test for general lamp and 3-banded lamp, phosphor powder from general lamp and 3-banded lamp should be controlled separately by stabilization or other methods to reuse as a renewable material because the phosphor powder is determined as a hazardous waste.
        22.
        2012.11 KCI 등재 서비스 종료(열람 제한)
        Landfill gas (LFG) has received considerable attention to produce a renewable energy source from waste because LFG contains about 45 ~ 55% methane. In order to improve LFG, the concept of bioreactor landfill is applied to Sudokown Landfill site. In landfill field test, the research area 3A (300 m × 300 m) and reference area 2A (300 m × 300) are prepared to compare the effect of leachate recirculation. Using injection wells, leachate is injected into the research area in the 2nd Landfill site and the distribution of moisture content in the research area is homogeneously saturated by the injected leachate. Leachate characteristics such as Alkalinity, BOD, COD, TKN, and TOC are increased with the input of the injected leachate because wastes are decomposed by the injected leachate but pH of leachate is almost not affected by the injected leachate. The production of LFG in the reseach area is improved by about 40% comparing with that in the reference area and the content of CH4 in LFG is consistently higher than 50%. Hence, it can be summarized that the production and the quality of LFG can be improved by the injection of leachate into landfill site.
        1 2