검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 6

        1.
        2023.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Background: The weakness of the gluteus medius (GM) is associated with various musculoskeletal disorders. The increasing GM activity without synergistic dominance should be considered when prescribing pelvic drop exercise (PD). Isometric hip extension or flexion of the non-weight bearing leg using thera-band at the ankle during PD may influence hip abductor activities. Objects: To determine how isometric hip extension or flexion of the non-weight bearing leg using thera-band at the ankle during PD influences the activities of three subdivisions of GM (anterior, GMa; middle, GMm; posterior, GMp), tensor fasciae latae (TFL), contralateral quadratus lumborum (QL), and GMp/TFL, GMm/QL activity ratios in patients with GM weakness. Methods: Twenty-three patients with GM weakness were recruited. Three types of PD were performed: PD, PD with an isometric hip extension of the non-weight bearing leg (PDE), and PD with an isometric hip flexion of the non-weight bearing leg (PDF). Surface electromyography (SEMG) was used to measure hip abductor activities. One-way repeated-measures analysis of variance was used to assess the statistical significance of muscle activities and muscle activity ratios. Results: GMa, GMm, and GMp activities were significantly greater during PDF than during PD and PDE (p < 0.001, p = 0.001; p = 0.001, p = 0.005; p = 0.004, p = 0.004; respectively). TFL activity was significantly greater during PDE than during PD and PDF (p < 0.001, p < 0.001, respectively). QL activity was significantly greater during PDF than during PD (p = 0.003). GMp/TFL activity ratio was significantly lower during PDE than during PD and PDF (p = 0.001, p = 0.001, respectively). There were no significant differences in the GMm/QL activity ratio. Conclusion: PDF may be an effective exercise to increase the activities of all three GM subdivisions while minimizing the TFL activity in patients with GM weakness.
        4,000원
        2.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Background: Bird dog exercise (BDE) is one of the lumbar stabilization exercises that rehabilitate low back pain by co-contraction of the local and global muscles. Previous studies have reported the effect of various type of BDEs (for example, practicing the exercises on various surfaces and changing the limb movement) for muscle co-contraction. Objects: This study aimed to investigate the effect of knee joint flexion position of the raised lower limb on abdominal and back muscle activity during BDE in patients with chronic low back pain (CLBP). Methods: Thirteen males participated in this study (age: 32.54 ± 4.48 years, height: 177.38 ± 7.17 cm). Surface electromyographic (SEMG) data of the internal abdominal oblique (IO), external abdominal oblique (EO), lumbar multifidus (MF), and thoracic part of the iliocostalis lumborum (ICLT) were collected in two knee joint flexion positions (90° flexion versus 0° flexion) during BDE. The SEMG data were expressed as a percentage of root mean square mean values obtained in the maximal voluntary isometric contraction. Results: Greater muscle activity of the IO (p = 0.001), MF (p = 0.009), and ICLT (p = 0.021) of the raised lower limb side and the EO (p = 0.001) and MF (p = 0.009) of the contralateral side were demonstrated in the knee joint flexion position compared to the knee joint extension position. Greater local/global activity ratios of the abdominal muscle (i.e., IO and EO) of the raised lower limb (p = 0.002) and the back muscle (i.e., MF and ICLT) of the contralateral side (p = 0.028) were also noted in the knee joint flexion position. Conclusion: BDE with a knee joint flexion position might be recommended as an alternative lumbar stabilization exercise to enhance muscle activity in both the raised lower limb and the contralateral sides of the trunk for individuals with CLBP
        4,000원
        3.
        2021.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Background: Individuals with scapular winging may have proprioceptive dysfunction which is important for motor control and causes shoulder instability. Reduced serratus anterior (SA) and lower trapezius (LT) muscle activity accompanied by over-active upper trapezius (UT), and pectoralis major (PM) may be contributing factors. Flexi-bar (FB) exercise may be used to increase joint position sense (JPS) and alter the target muscle activities. Objects: This study aimed to investigate the immediate effects of flexi-bar exercise prior to knee push-up plus (FPK) versus knee push-up plus (KPP) on JPS and muscle activity of SA, LT, UT, and PM in subjects with scapular winging. Methods: Eighteen subjects with scapular winging were recruited. JPS was investigated at baseline, after KPP and after FPK. Passive and active JPS errors were calculated by isokinetic equipment. Surface electromyography was used to record muscle activities during KPP and FPK. One-way repeated-measures analysis of variance and post hoc analyses were used to analyze the JPS error measured at baseline, after KPP and after FPK. Paired t-tests were used to compare muscle activities between KPP and FPK. Results: Passive JPS error was significantly decreased after KPP (p = 0.005) and after FPK (p = 0.003) compared to the baseline. Active JPS error was also significantly decreased after KPP (p = 0.016) and after FPK (p = 0.012) compared to the baseline. There was no significant difference in the passive and active JPS errors between KPP and FPK. SA activity during FPK was significantly increased (p = 0.024), and LT activity during FPK was significantly increased (p = 0.006). There were no significant differences in the UT and PM activity. Conclusion: FB might be recommended to immediately improve passive and active JPS and to selectively increase SA and LT muscle activities during KPP in individuals with scapular winging.
        4,000원
        4.
        2021.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A weak or dysfunctional gluteus medius (Gmed) is related to several pathologies, and individuals with hip abductor weakness have Gmed weakness. This study aimed to systematically review the literature associated with the anatomy and function of the Gmed, and the prevalence, pathology, and exercise of Gmed weakness. Papers published between 2010 and 2020 were retrieved from MEDLINE, Google Academic Search, and Research Information Sharing Service. The database search used the following terms: (glut* OR medius OR hip abduct*) AND weak*. The Gmed plays an important role in several functional activities as a primary hip abductor by providing pelvic stabilization and controlling hip adduction and internal rotation. Weakness of the Gmed is associated with many disorders including balance deficit, gait and running disorders, femoroacetabular impingement, snapping hip, gluteal tendinopathy, patellofemoral pain syndrome, osteoarthritis, iliotibial band syndrome, anterior cruciate ligament injury, ankle joint injuries, low back pain, stroke, and nocturia. Overuse of the tensor fasciae latae (TFL) as a hip abductor due to Gmed weakness can also cause several pathologies such as pain in the lower back and hip and degenerative hip joint pathology, which are associated with dominant TFL. Similarly, lateral instability and impaired movements such as lumbar spine lateral flexion or lateral tilt of the pelvis can occur due to compensatory activation of the quadratus lumborum for a weakened Gmed while exercising. Therefore, the related activation of synergistic muscles or compensatory movement should be considered when prescribing Gmed strengthening exercises.
        4,000원
        5.
        2019.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Background: The bridge exercise targets the gluteus maximus (Gmax) and gluteus medius (Gmed). However, there is also a risk of dominant hamstring (HAM) and erector spinae (ES) muscles. Objects: To analyze the muscle activity the of Gmax, Gmed, HAM and ES during the bridge exercise with and without hip external rotation in different degrees of knee flexion. Methods: Twenty-three subjects were participated. The electormyography (EMG) activity of the Gmax, Gmed, HAM and ES muscles was recorded during the exercise. The subjects performed the bridge exercise under four different conditions: (a) with 90˚ knee flexion, without hip external rotation (b) with 90˚ knee flexion, with hip external rotation (c) with 135˚ knee flexion, without hip external rotation (d) with 135˚ knee flexion, with hip external rotation. Results: There was no significant interaction effect between the degree of knee flexion and hip external rotation. There was a significant main effect for degree of knee flexion in Gmax, HAM muscles activity. Gmax muscle activity was significantly greater in the 135˚ knee flexion position than in the 90˚ knee flexion position (p<.001). While HAM muscle activity was significantly less in 135˚ knee flexion position than in the 90˚ knee flexion position (p<.001). ES muscle activity was significantly less in the 135˚ knee flexion position than in the 90˚ knee flexion position (p=.002). The activity of both the Gmax and Gmed muscles was significantly greater with hip external rotation (p<.001 and p=.005, respectively). Conclusion: For patients performing the bridge exercise, positioning the knee in 135° of flexion with hip external rotation is effective for improving Gmax and Gmed muscle activity while decreasing HAM, and ES muscle activity.
        4,000원
        6.
        2019.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Background: A tight iliotibial band (ITB) may lead to lateral patellar maltracking, compression, and tilt, and dominant vatus lateralis (VL) muscle activation relative to vastus medialis oblique (VMO) can laterally displace the patella, which leads to anterior knee pain. Therefore, an effective management technique is needed to stabilize the patella in individuals with tight ITB. Increased stability during the modified Thomas test has the potential to decrease compensatory motion and thus to selectively stretch the ITB. Objects: The purpose of this study was to determine the effects of ITB stretching in the modified Thomas test position on ITB flexibility, patellar translation, and muscle activities of the VMO and VL during quadreceps-setting (QS) exercise in individuals with tight ITB. Methods: Twenty-one subjects with tight ITB were recruited. Digital inclinometer was used to measure the hip adduction angle during the modified Ober test. Universal goniometer was used to measure the hip abduction angle during the modified Thomas test. Ultrasonography was used to measure the patella-condylar distance. Electromyography was performed to collect data of muscle activities. Paired t-test was used to determine the statistical significance between pretest and posttest. Results: The range of hip adduction in modified Ober test increased (p=.04) and the range of hip abduction in the modified Thomas test decreased after ITB stretching (p<.01). There was no difference between lateral patellar translation (p=.18). VMO muscle activity significantly increased after ITB stretching during QS (p<.01). VL muscle activity had no difference after stretching. Conclusion: The ITB stretching in the modified Thomas test position can be suggested as a management method for improving ITB flexibility and VMO muscle activity in individuals with tight ITB.
        4,000원