검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 7

        1.
        2023.05 구독 인증기관·개인회원 무료
        In the pressurized water nuclear reactors (PWRs), the upper and bottom head penetration nozzles, the geometric asymmetry of the welded part increases from the center to the outer part, increasing the possibility of defects. For this reason, it is important to perform early detection and management through analysis of defects occurring in the welded parts of upper and bottom penetration nozzles of reactor vessel. However, it is very difficult to operate boat sampling of the welding area because the spacing of the penetration nozzle of the bottom head of the reactor is very narrow. In addition, it is more difficult to collect welded specimens of bottom penetration nozzles by electrical discharge machining in a boric acid water environment of nuclear reactor. In this work, to overcoming these technical difficulties, we developed a boat sampling robot system, which is composed of the specimen collection electrode head, borate-mediated discharge electrode and control system. Also, we performed basic performance tests and summarize the results.
        2.
        2022.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Spent filters with a high radiation dose rate of 2 mSv·hr−1 or more are not easily managed. So far, the Korean policy for spent filter disposal is to store them temporarily at nuclear power plants until the waste filters can be easily managed. Nuclear power plant decommissioning in Korea is starting with Kori unit 1. Volume reduction of waste generated during decommissioning can reduce the cost and optimize the space usage at disposal site. Therefore, efficient volume reduction is a very important factor during the decommissioning process. A conceptual method, based on the experiences of developing 200 and 800 ton compactors at Orion EnC, has been developed considering worker exposure with the followings a crusher (upgrade of compaction efficiency), an automatic dose measuring system with a NaI(Tl) detector, a shield box, an inner drum to prepare for easy handling of drums and packaging, a 30 ton compactor, and an automatic robot system. This system achieves a volume reduction ratio of up to 85.7%; hence, the system can reduce the disposal cost and waste volume. It can be applied to other types of wastes that are not easily managed due to high dose rates and remote control operation necessity.
        4,200원
        3.
        2022.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In decommissioning a nuclear power plant, numerous concrete structures need to be demolished and decontaminated. Although concrete decontamination technologies have been developed globally, concrete cutting remains problematic due to the secondary waste production and dispersion risk from concrete scabbling. To minimize workers’ radiation exposure and secondary waste in dismantling and decontaminating concrete structures, the following conceptual designs were developed. A micro-blast type scabbling technology using explosive materials and a multi-dimensional contamination measurement and artificial intelligence (AI) mapping technology capable of identifying the contamination status of concrete surfaces. Trials revealed that this technology has several merits, including nuclide identification of more than 5 nuclides, radioactivity measurement capability of 0.1–107 Bq·g−1, 1.5 kg robot weight for easy handling, 10 cm robot self-running capability, 100% detonator performance, decontamination factor (DF) of 100 and 8,000 cm2·hr−1 decontamination speed, better than that of TWI (7,500 cm2·hr−1). Hence, the micro-blast type scabbling technology is a suitable method for concrete decontamination. As the Korean explosives industry is well developed and robot and mapping systems are supported by government research and development, this scabbling technology can efficiently aid the Korean decommissioning industry.
        4,300원
        6.
        2020.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        국내 3단계 매립형 처분시설은 2018년도 한국원자력환경공단의 중^저준위 방폐물관리시행계획에 의하면 주로 원전 해체 현장에서 발생하는 극저준위방폐물을 수용하기 위해 2019년 4월부터 2026년 2월까지 총 104,000드럼(2개 트렌치)을 수용 하기 위해 건설이 계획 중이다(총 2,246억원 투입). 이후 총 5개 트렌치에 260,000드럼이 총 34,076 m2의 면적에 단계적으로 수용되며 따라서 현재 한국원자력환경공단은 관련 인수기준을 마련 중에 있다. 극저준위방폐물 처분시설 인수기준의 경우 프랑스, 스페인 등이 전용 처분시설을 운영하면서 자국의 인수기준을 합리적으로 잘 준용하고 있으나 본 논문에서는 해체방 폐물의 처분에 가장 경험이 많은 미국의 처분시설을 고려하여 국내 매립형 처분시설에 우선적으로 반영되어야 할 사항이 있는지 분석하였고 이를 통하여 경주내 3단계 매립형 처분시설의 인수기준 마련에 도움이 되고자 하였다.
        4,300원