검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2018.01 KCI 등재 서비스 종료(열람 제한)
        다변량 지역빈도해석은 기존에 사용되어온 다변량 빈도해석과 지역빈도해석의 장점을 가지고 있는 방법으로 다양한 변수를 고려함으로써 수문현상에 대하여 많은 정보를 얻을 수 있다. 현재까지는 우리나라의 수문자료를 이용하여 다변량 지역빈도해석이 시도된 적이 없어 국내의 수문자료를 대상으로 다변량 지역빈도해석의 적용성을 검토할 필요가 있다. 본 연구에서는 다변량 지역빈도해석의 수문학적 동질지역을 설정하는 단계에 집중하여 이변량 수문자료인 연최대 강우량-지속기간 자료에 대하여 수문학적 동질지역을 설정하였다. 이변량 지역빈도해석에서 사용되는 지역 구분방법의 한국의 연최대 강우량-지속기간 자료에 대한 적용성을 평가하였고 그 특성을 분석하였다. 기상청 71개 지점에 대하여 분석을 실시하였다. 군집해석방법으로는 K-medoid 방법을 적용하였고, 불일치 척도와 이질성 척도를 이용하여 지역구분이 적절히 되었는지를 판정하였다. 군집해석 결과 한국은 총 5개의 지역으로 나누어지며, 두 지역을 제외하고는 지역 내 모든 지점의 불일치 척도가 기준치 이하인 것으로 나타났다. 자료연수가 짧은 지점에서 불일치 척도가 높게 나오는 것을 확인하였다. 구분된 모든 지역은 지역 내 지점들의 자료들이 동질한 것으로 나타났고 각 지점간의 상관성이 매우 높은 것으로 나타났다.
        2.
        2012.12 KCI 등재 서비스 종료(열람 제한)
        본 연구에서는 비선형적 모델인 웨이블렛-인공신경망을 적용하여 충주댐 유역의 일유입량을 예측하였다. 일반적으로 시계열 자료는 경향성, 주기성 및 추계학적 성분의 선형조합으로 이루어져 있다. 그러나 이러한 자료를 통해 시계열 모형 구축 시 경향성 및 주기성은 제거되어야하는 성분이다. 따라서 수문기상자료에 포함되어있는 경향성 및 주기성과 같은 비선형 동역학적 잡음과 측정과정에서 발생하는 단순잡음을 제거시키기 위해 디노이징기법인 웨이블렛 변환을 적용하였다. 웨이블렛 변환을 적용한 자료를 입력자료로 사용한 웨이블렛-인공신경망(WANN)과 원자료를 사용한 인공신경망(ANN)을 비교하였다. 산정결과 결정계수와 선형회귀를 통한 기울기는 WANN이 ANN보다 각각 0.032, 0.0115 더 큰 값을 나타냈고, 타겟값과 예측값 사이의 오차를 나타내는 RMSE와 RRMSE는 WANN 모형이 ANN 보다 각각 37.388, 0.099 더 작은 값을 나타냈다. 따라서 본 연구에서 적용한 WANN 모형이 ANN 보다 정확한 결과를 나타내었으며, 웨이블렛 변환을 통한 디노이징 기법의 적용이 잡음이 포함되어 있는 원자료의 사용보다 더 정확한 예측을 하는 것으로 판단된다.
        3.
        2012.08 KCI 등재 서비스 종료(열람 제한)
        확률강우량은 수공구조물의 설계에 있어 중요한 역할을 하며 이러한 확률강우량의 산정은 일반적으로 일변량 빈도해석을 수행하고 최적의 확률분포형을 찾아냄으로써 계산된다. 하지만 일변량 빈도해석은 수행 시 지속기간이 제한적이라는 단점이 있으며 이를 보완하기 위해 본 연구에서는 이변량 빈도해석을 수행하였다. 다변량 모형인 copula 모형 중 3가지의 분포형을 이용하여 5개 지점의 연최대강우사상에 대해 이변량 빈도해석을 수행하였으며 확률변수로 강우량과 지속기간을 사용하였다. 주변분포형은 강우량에는 Gumbel (GUM), generalized logistic (GLO) 분포형, 지속기간에는 generalized extreme value (GEV), GUM, GLO 분포형이 사용됐으며 copula 모형은 Frank, Joe, Gumbel-Hougaard 모형을 이용하였다. 주변분포형의 매개변수는 확률가중모멘트법을 이용하여 추정하였으며, copula 모형의 매개변수는 준모수방법인 의사최우도법을 사용하여 구하였다. 이를 통해 얻어진 확률강우량을 주변분포형과 copula 모형을 바꾸어가며 비교하였다. 그 결과, 주변분포형의 종류에 따른 변화에서는 지속기간의 분포형에는 크게 영향을 받지 않는 것으로 나타났다. 강우량의 분포형에 따라서는 조금씩 차이가 났으며 강우량의 분포형이 GUM일 경우, GLO일 때에 비해 재현기간이 증가할수록 확률강우량이 증가하는 경향이 두드러졌다. Copula 모형별로 비교해보았을 때, Joe, Gumbel-Hougaard 모형은 비슷한 경향을 나타내었으며 Frank 모형은 재현기간의 증가에 따른 확률강우량의 증가가 강하게 나타냈다.