The distribution patterns of estuarine copepods were investigated in the Seomjin River estuary of southern Korea after heavy rains in August 2006. Tidal influence extended 16 km from the estuary mouth. Each estuary zone (Oligohaline salinity< 5, mesohaline salinity 5~18, polyhaline salinity >18) changed within a range of about 5~6 km between low and high tides. A total of ten species were recorded, of which Pseudodiaptomus koreanus, Sinocalanus tenellus, and Tortanus dextrilobatus were predominant in the oligohaline zone; Acartia ohtsukai and Acartia forticrusa in the mesohaline zone; and A. erythraea, Calanus sinicus, Centropages dorsispinatus, Labidocera rotunda and Paracalanus parvus s. l. in the polyhaline zone. Their density was fastly reduced in the other zones. In particular, the oligohaline species migrated and aggregated into deeper water during ebb tides in order to retain their populations, while the same tendency was weaker for polyhaline species, suggesting that evolutionary traits primarily control population retention behaviors in estuarine environments.
We conducted a year-long survey in 2000 to examine seasonal fluctuations in the abundance of the demersal copepod Pseudodiaptomus sp., the dominant copepod in the Seomjin River estuary, where the spring tide strongly affects changes in salinity gradients.
The exposed strain of C. riparius treated with di (ethyl- hexyl)-phthalate (DEHP) did not result in a consistent relationship between mortality or sex ratio and chemical concentrations. And after treating with DEHP, the emergent female from the exposed st