검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1

        1.
        2020.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Data on patent and scientific paper is considered as a useful information source for analyzing technological information and has been widely utilized. Technology big data is analyzed in various ways to identify the latest technological trends and predict future promising technologies. Clustering is one of the ways to discover new features by creating groups from technology big data. Patent includes refined bibliographic information such as patent classification code whereas scientific paper does not have appropriate bibliographic information for clustering. This research proposes a new approach for clustering data of scientific paper by utilizing reference titles in each scientific paper. In this approach, the reference titles are considered as textual information because each reference consists of the title of the paper that represents the core content of the paper. We collected the scientific paper data, extracted the title of the reference, and conducted clustering by measuring the text-based similarity. The results from the proposed approach are compared with the results using existing methodologies that one is the approach utilizing textual information from titles and abstracts and the other one is a citation-based approach. The suggested approach in this paper shows statistically significant difference compared to the existing approaches and it shows better clustering performance. The proposed approach will be considered as a useful method for clustering scientific papers.
        4,000원