검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 24

        21.
        2015.09 서비스 종료(열람 제한)
        Although the toxicological impacts of the xenoestrogen bisphenol-A (BPA) have been studied extensively, but its mechanism of action is poorly understood. Eventually, no standard method exists for evaluating the possible health hazard of BPA. Considering mice spermatozoa as a potential in vitro model, here we demonstrated the effects of BPA exposure (0.0001, 0.01, 1, and 100 μM for 6 h) on spermatozoa and the related mechanisms of action. Our results demonstrated that high concentrations of BPA negatively affect sperm motility, viability, intracellular ATP, and mitochondrial functions by activating the mitogen-activated protein kinase, phosphatidylinositol 3-kinase, and protein kinase-A pathways. The same doses were also employed to identify the differential expressed proteins of exposure and screen their functional affiliation to diseases using sperm proteomics and informatics, respectively. Our results demonstrated that a high concentration of BPA (100 μM) induced differential expression (> 2-fold) of 24 proteins in spermatozoa (16 down- and 9 up-regulated), that are putatively involved in the pathogenesis of several diseases. To the best of our knowledge, this is the first study to demonstrate the mechanisms of BPA action in spermatozoa and to identify the possible biomarkers of exposure. Moreover, we anticipated that current strategy might apply for the hazard assessment of other toxicological agents.
        22.
        2015.09 서비스 종료(열람 제한)
        As an endocrine disruptor, bisphenol-A (BPA) causes several functional and behavioral abnormalities related to reproduction. The current study was design to evaluate the effect of perinatal exposure of female mice to BPA on sperm function of adult F(1) offspring. Pregnant female mice F(0) were gavaged with three different concentration of BPA, such as 50 μg/kg/day (tolerable daily intake value by the European Food Safety Authority), 5 mg/kg/day (no-observed-adverse-effect level; NOAEL), and 50 mg/kg/day (lowest-observed-adverse-effect level; LOAEL) and corn oil (7 mg/kg/day; vehicle control). The functional parameters of F(1) spermatozoa were studied both before and after capacitation, whereas the fertility assessment was evaluated by in vitro and in vivo assay using unexposed females. Our results showed that spermatozoa hyperactivated motility, capacitation, intracellular ATP, Ca2+, and ROS levels after capacitation were significantly affected using NOAEL and LOAEL concentration of BPA. However, the sperm motility was only affected by LOAEL dose after capacitation. All of the tested parameters were potentially unaffected by BPA before capacitation, except intracellular ATP that decreased by all concentrations. Although both NOAEL and LOAEL concentration were effectively reduced the rate of fertilization and embryonic development in vitro, however the average litter size was only affected by LOAEL dose. Our finding suggested that perinatal exposure of 50 μg/kg/day did not produce significant effects; however both NOAEL and LOAEL affects overall sperm function after capacitation, leading to impairments in the fertility of F(1) male offspring.
        23.
        2014.09 서비스 종료(열람 제한)
        The present study aims to investigate the effect of BPA on sperm functions, fertilization and to evaluate their association with the activity of fertility related proteins in spermatozoa. We used a comprehensive in vitro test system to evaluate the effect of various concentrations of BPA (0.0001, 0.01, 1, and 100 μM) on mouse spermatozoa following 6 h of incubation. Our results showed that high concentration of BPA inhibited sperm motility and motion kinematics by significantly decreasing ATP levels in spermatozoa. Simultaneously, exposure of spermatozoa to high concentrations of BPA increased the tyrosine phosphorylation of sperm proteins involved in PKA-dependent regulation and induced a robust AR, ultimately results in poor fertilization and compromised embryonic development. Finally, BPA effects on selected group of fertility related proteins in spermatozoa, such as it degraded the β-actin, whereas the levels of peroxiredoxin-5, glutathione peroxidase, glyceraldehyde-3-phosphate dehydrogenase, and succinate dehydrogenase were increased. Based on these results, we propose that high concentration of BPA may alter overall sperm functions, fertilization and embryonic development, in association with degradation and/or phosphorylation of fertility related proteins in spermatozoa.
        1 2