Polarimetric measurements of the lunar surface from lunar orbit soon will be available via Wide-Field Polarimetric Camera (PolCam) onboard the Korea Pathfinder Lunar Orbiter (KPLO), which is planned to be launched in mid 2022. To provide calibration data for the PolCam, we are conducting speckle polarimetric measurements of the nearside of the Moon from the Earth’s ground. It appears that speckle imaging of the Moon for scientific purposes has not been attempted before, and there is need for a procedure to create a “lucky image” from a number of observed speckle images. As a first step of obtaining calibration data for the PolCam from the ground, we search for the best sharpness measure for lunar surfaces. We then calculate the minimum number of speckle images and the number of images to be shift-and-added for higher resolution (sharpness) and signal-to-noise ratio.
We examine the corecollapse times of isolated, two-mass-component star clusters using Fokker-Planck models. With initial condition of Plummer models, we find that the corecollapse times of clusters with M1/M2 >> 1 are well correlated with (N1/N2)^0.5 (m1/m2)^2 Trh, where (M1/M2) and (m1/m2) are the light to heavy component total and individual mass ratios, respectively, N1/N2 is the number ratio, and Trh is the initial half-mass relaxation time scale. We also find two-component cluster parameters that best match multi-component (thus more realistic) clusters with power-law mass functions.