Excessive iron can promote the production of free radicals, thereby leading to harmful effects on cancer and aging. Ascorbic acid is not only an antioxidant but also a co-factor of iron absorption. The effect of iron-overload with ascorbic acid on experimental colon carcinogenesis was investigated in male ICR mice. Animals were treated weekly with azoxymethane (AOM, 10 mg/kg b.w.) at 0, 1, and 2 week and then drunk 2% dextran sodium sulfate (DSS)-containing water for the next 1 week. There were four experimental groups: carboxymethylcellulose (CMC) alone (control), CMC + ascorbic acid (AA), CMC + Fe, CMC + Fe + AA. The animals fed on AIN-76A purified rodent diet for six weeks. AA or Fe2O3 at the dose of 450 mg/kg b.w. were daily and orally treated for 6 weeks. The colonic mucosa was stained with methylene blue and then aberrant crypt foci (ACF) and polyps were counted. Thiobarbituric acid-reactive substances (TBARS) in serum and liver were determined. Iron concentration in liver was measured by inductively coupled plasma spectrophotometer. Fe-overload with AA strongly increased liver iron contents compared to control or Fe group (p<0.05). There were no significant differences in the number of ACF or polyps among all groups, although ironoverloaded groups had slightly higher numbers compared with the control or AA group. TBARS values in the liver were increased in the iron-overloaded groups compared to control and AA only group (p<0.05), but serum TBARS values were not changed. These results indicate that the excessive iron treatment did not affect the experimental colon carcinogenesis regardless of presence of AA in mice.