With the development of photocatalytic hydrogen production technology, the effective transport of photogenerated carrier electrons is still one of the main factors affecting the performance of photocatalytic hydrogen evolution. In this work, graphdiyne was prepared by ball milling method. The CoMo-MOF with polyhedral structure was introduced into graphdiyne to construct S-scheme heterojunction to promote the efficient transfer of photogenerated carriers and enhanced hydrogen evolution activity. Graphdiyne is a new carbon material with adjustable band gap, which is synthesized from the hybrid of sp and sp2, and has excellent electrical conductivity. CoMo-MOF is a polyhedral structure that can provide more active sites and promote photocatalytic hydrogen evolution. The weak point of poor conductivity in CoMo-MOF has been successfully improved by combining CoMo-MOF with graphdiyne, and the migration rate of photogenerated carriers has been accelerated. The hydrogen evolution property of graphdiyne/CoMo-MOF is 300 μmol, which is 19.61 times that of graphdiyne and 9.03 times that of CoMo-MOF. Therefore, the construction of S-scheme heterojunction provides a transport channel for electron transfer and improves the efficiency of photogenerated carrier separation. This work provides a new train of thought of design to introduce MOFs materials into carbon materials for photocatalytic hydrogen evolution.
Orthorhombic DyMnO3 films are fabricated epitaxially on Nb-1.0 wt%-doped SrTiO3 single crystal substrates using pulsed laser deposition technique. The structure of the deposited DyMnO3 films is studied by X-ray diffraction, and the epitaxial relationship between the film and the substrate is determined. The electrical transport properties reveal the diodelike rectifying behaviors in the all-perovskite oxide junctions over a wide temperature range (100 ~ 340 K). The forward current is exponentially related to the forward bias voltage, and the extracted ideality factors show distinct transport mechanisms in high and low positive regions. The leakage current increases with increasing reverse bias voltage, and the breakdown voltage decreases with decrease temperature, a consequence of tunneling effects because the leakage current at low temperature is larger than that at high temperature. The determined built-in potentials are 0.37 V in the low bias region, and 0.11 V in the high bias region, respectively. The results show the importance of temperature and applied bias in determining the electrical transport characteristics of all-perovskite oxide heterostructures.
Orthorhombic dysprosium manganite DyMnO3 with single phase is synthesized using solid-state reaction technique and the crystal structure and dielectric properties as functions of temperature and frequency are investigated. Thermally activated dielectric relaxations are shown in the temperature dependence of the complex permittivity, and the respective peaks are found to be shifted to higher temperatures as the measuring frequency increases. In Arrhenius plots, activation energies of 0.32 and 0.24 eV for the high- and low-temperature relaxations are observed, respectively. Analysis of the relationship between the real and imaginary parts of the permittivity and the frequencies allows us to explain the dielectric behavior of DyMnO3 ceramics by the universal dielectric response model. A separation of the intrinsic grain and grain boundary properties is achieved using an equivalent circuit model. The dielectric responses of this circuit are discerned by impedance spectroscopy study. The determined grain and grain boundary effects in the orthorhombic DyMnO3 ceramics are responsible for the observed high- and low-temperature relaxations in the dielectric properties.