Graphene quantum dots have recently gained significant attention for their potential application in the development of optoelectronic materials. The present study focused on the ultrasonic method to synthesize white-light-emitting graphene quantum dots from coal soot in just 2 min at room temperature. The white-light emission was achieved in solution and polymeric film with good Commission Internationale del’Eclairage index (0.28, 0.33) and (0.25, 0.30), respectively. The graphene quantum dots cover a significant fraction of the visible region in the emission spectrum with two prominent bands at 475 and 635 nm at 380 nm photoexcitation, corresponding to monomer and J-aggregate emission. The strong reducing and basic nature of the ethylene diamine facilitated the preparation of self-assembled J-aggregate graphene quantum dots through hydrogen bonding and electrostatic interaction. The mechanism of origin J-aggregate emission in the prepared graphene quantum dots was studied using UV–visible absorption, steady-state, lifetime fluorescence spectroscopy, and zeta potential. The as-synthesized graphene quantum dots are successfully coated on the UV-LEDs' surface and emit white light on the applied voltage. The colours of red, green, blue, and yellow balls appear significantly in the lighting of prepared white LEDs.
In this study, we report a controlled one-pot green synthesis of multiwalled carbon nanotubes (MWCNTs) via pyrolysis of sustainable agriculture waste (chickpea peel) at 400 °C in aqueous medium. These MWCNTs demonstrated 7.0 nm diameter, 0.28 nm graphitic spacing with carbonyl, hydroxyl, and carboxylic acid functionality. The D band (presence of sp3 defects) and G band ( E2g mode of graphite) at 1350 cm−1 and 1580 cm−1 originated in Raman spectrum, respectively. The prepared MWCNTs showed blue fluorescence with 10% fluorescence quantum yield in aqueous medium. The MWCNTs showed triple exponential decay characteristics with an average fluorescence lifetime of 4.7 ns. The synthesized MWCNTs revealed a consistent fluorescence in the cytoplasm of 22RV1 human prostate carcinoma cell line without exerting any sign of cytotoxicity. The MWCNTs also exhibited remarkable cytocompatibility in human immortalized prostate epithelial RWPE1 cells.