The emission of off-gas streams from used fuel recycling is a concern in nuclear energy usage as they contain radioactive compounds, such as, 3H, 14C, 85Kr, 131I, and 129I that can be harmful to human health and environment. Radioactive iodine, 129I, is particularly troublesome as it has a half-life of more than 15 million years and is prone to accumulate in human thyroid glands. Organic iodides are hazardous even at very low concentrations, and hence the capture of 129I is extremely important. Dynamic adsorption experiments were conducted to determine the efficiency of sodium mordenite, partially exchanged silver mordenite, and fully exchanged silver mordenite for the removal of methyl iodide present at parts per billion concentrations in a simulated off-gas stream. Kinetic analysis of the system was conducted incorporating the effects of diffusion and mass transfer. The possible reaction mechanism is postulated and the order of the reaction and the values of the rate constants were determined from the experimental data. Adsorbent characterization is performed to investigate the nature of the adsorbent before and after iodine loading. This paper will offer a comprehensive understanding of the methyl iodide behavior when in contact with the mordenites.