For the study of population genetic structure with mtDNA, it is essential to measure genetic diversity at each mtDNA regions. Also, to evaluate the variation according to the each region should follow as well as to see if there are differences. In this study, we delved into the variations and dendrogram among samples of seven mtDNA regions (NDⅡ, NDⅤ, NDⅣ, NDⅣL, NDⅥ, NDⅠ, 12SrRNA) from wild Pacific abalone, Haliotis discus hannai collected in Yeosu, Korea. The region with the highest genetic variation was NDⅣ region (Haplotype diversity = 1.0000, Nucleotide diversity = 0.010823) with two to five times higher variation than the others. Furthermore, the study to see if there is a difference between the regions of samples showed that similar aspects of dendrogram in NDⅡ and NDⅠ(divergence of 90% and 87%), which forms a group with hd4, 7, 8 and 10 at bootstrap support, based on 1000 replications. Also, pair-wise FST between clusters within the regions showed high values; 0.4061 (P=0.0000), 0.4805 (P=0.0000) respectively. Therefore we can infer that it is the most efficient and accurate way to analyze the region of NDⅣ with the highest variation in addition to the regions of NDⅡ and NDⅠ, which formed clusters with high bootstrap value, for study of population genetic structure in this species.