검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2016.11 서비스 종료(열람 제한)
        The purpose of this study was to investigate the effect of the preparation method on CeO2-promoted Cu/γ -Al2O3 catalysts for the high temperature shift reaction using simulated waste-derived syngas (H2 + CO). To investigate the effect of preparation method on the CeO2-promoted Cu/γ-Al2O3 catalyst, we compared catalytic performance over Ce/Cu/γ-Al2O3, Ce-Cu/γ-Al2O3, Cu/Ce/γ-Al2O3, and Cu/γ-Al2O3 catalysts, and tried to explain the differences in catalytic performance with various characterization methods. The physico-chemical properties of the CeO2-promoted catalysts were characterized using surface spectroscopies such as BET, XRD, TPR, XPS, Raman spectroscopy, photoluminescence spectroscopy, and N2O-chemisorption. The catalyst characterizations were correlated with activity results in the high temperature shift reaction.
        2.
        2013.01 KCI 등재 서비스 종료(열람 제한)
        Simulated waste-derived synthesis gas has been tested for hydrogen production through water gas shift (WGS) reaction in the temperature range of 240oC ~ 400oC over supported Pt catalysts prepared by an incipient wetness impregnation method. MG30, MgO, ZrO2, Al2O3 and CeO2 were employed as supports for WGS reaction in this study. 1 wt.% Pt/ CeO2 catalyst exhibited the highest CO conversion as well as 100% CO2 selectivity. This is due to easier reducibility of Pt/CeO2 and high oxygen mobility and oxygen storage capacitiy of CeO2. Pt/CeO2 catalyst can be a promising catalyst for WGS reaction from waste-derived synthesis gas.