Near infrared (NIR) spectroscopy was used to classify normal and artificially aged nonviable corn (Zea mays L., cv. 'Suwon19') seeds. The spectra at 1100-2500nm were scanned with normal and artificially aged single seeds and analyzed by principle component analysis (PCA). To discriminate normal seeds from artificially aged seeds, a calibration modeling set was developed with a discriminant partial least square 2 (PLS 2) method. The calibration model derived from PLS 2 resulted in 100% classification accuracy of normal and artificially aged (aged) seeds from the raw, the 1st and 2nd derivative spectra. The prediction accuracy of the unknown normal seeds was 88, 100 and 97% from the raw, the 1st and 2nd derivative spectra, and that of the unknown aged seeds was 100% from all the raw, the 1st and 2nd derivative spectra, respectively. The results showed a possibility to separate corn seeds into viable and non-viable using NIR spectroscopy.