We crossmatch AKARI all-sky survey with the Sloan Digital Sky Survey Data Release 10 (SDSS DR10) and the Final Data Release of the Two-Degree Field Galaxy Redshift Survey (2dFGRS) and identify 118 Ultraluminous Infrared Galaxies (ULIRGs) and one Hyperluminous Infrared Galaxy (HLIRG). We find 40 new ULIRGs and one new HLIRG. ULIRGs in our sample are interacting galaxies or ongoing/post mergers. This is consistent with the fact that ULIRGs are major mergers of disk galaxies. We find that compared to local star forming SDSS galaxies of similar mass, local ULIRGs have lower oxygen abundances and this is consistent with the previous studies.
AKARI's all-sky survey resolves the far-infrared emission in many thousands of nearby galaxies, providing essential local benchmarks against which the evolution of high-redshift populations can be measured. This review presents some recent results in the resolved galaxy populations, covering some well-known nearby targets, as well as samples from major legacy surveys such as the Herschel Reference Survey and the JCMT Nearby Galaxies Survey. This review also discusses the prospects for higher redshifts surveys, including strong gravitational lens clusters and the AKARI NEP field.
We have collected dozens of mid-infrared spectra showing UIR bands from diffuse Galactic emitting regions with the AKARI's Infrared Camera (IRC) onboard AKARI, as part of the ISMGN Mission Program. The datasets cover various directions in the inner Galactic Plane ( |l| < 70 deg), in the outer Galactic Plane ( |l| > 70 deg), and in the off-Plane ( |b| > 2 deg). The variations in the UIR band ratios are examined in terms of the radiation environments judged from the far-infrared ( 50 − 170 μm ) spectral energy distribution (SED) made with AKARI/FIS All Sky Survey data at each slit position where mid-IR spectra were obtained. We have found that the band ratios of 6.2 μm / 11.2 μm and 7.7 μm / 11.2 μm toward the inner Galaxy are systematically higher than those toward the outer Galaxy and off the Galactic plane. Likely causes of the variations in properties of UIR bands in diffuse emission on a Galactic scale are discussed in this paper.
We show how the rotation emission from isolated interstellar Polycyclic Aromatic Hydrocarbons (PAHs) can explain the so-called anomalous microwave emission (AME). AME has been discovered in the last decade as microwave interstellar emission (10 to 70 GHz) that is in excess compared to the classical emission processes: thermal dust, free-free and synchrotron. The PAHs are the interstellar planar nano-carbons responsible for the near infrared emission bands in the 3 to 15 micron range. Theoretical studies show that under the physical conditions of the interstellar medium (radiation and density) the PAHs adopt supra-thermal rotation velocities, and consequently they are responsible for emission in the microwave range. The first results from the PLANCK mission unexpectedly showed that the AME is not only emitted by specific galactic interstellar clouds, but it is present throughout the galactic plane, and is particularly strong in the cold molecular gas. The comparison of theory and observations shows that the measured emission is fully consistent with rotation emission from interstellar PAHs. We draw the main lines of our PLANCK-AKARI collaborative program which intends to progress on this question by direct comparison of the near infrared (AKARI) and microwave (PLANCK) emissions of the galactic plane.