We present the results of far-infrared spectroscopic observations of the Large Magellanic Cloud (LMC) with FIS-FTS. We covered a large area across the LMC, including 30 Doradus (30 Dor) and N44 star-forming regions, by 191 pointings in total. As a result, we detect the [OIII] and [CII] line emission as well as far-infrared dust continuum emission throughout the LMC. We find that the [OIII] emission is widely distributed around 30 Dor. The observed size of the distribution is too large to be explained by massive stars in 30 Dor, which are assumed to be enshrouded by clouds with the constant gas density estimated from the [OIII] line intensities. Therefore the surrounding structure is likely to be highly clumpy. We also find a global correlation between the [OIII] and the far-infrared continuum emission, suggesting that the gas and dust are well mixed in the highly-ionized region where the dust survives in clumpy dense clouds shielded from energetic photons. Furthermore we find that the ratios of [CII]/CO are as high as 110,000 in 30 Dor, and 45,000 even on average, while they are typically 6,000 for star-forming regions in our Galaxy. The unusually high [CII]/CO is also consistent with the picture of clumpy small dense clouds.
Using the AKARI mid-infrared all-sky survey catalogue, we are searching for debris disks which are important objects as an observational clue to on-going planetary system formation. Debris disk candidates are selected through a significant excess of the measured flux over the predicted flux for the stellar photospheric emission at 18 μm . The fluxes were originally estimated based on the near-infrared spectral energy distributions (SEDs) of central stars constructed from the 2MASS J-, H-, and Ks-band fluxes. However, we found that in many cases the 2MASS photometry has large errors due to saturation in the central part of a star image. Therefore we performed follow-up observations with the IRSF 1.4m near-infrared telescope in South Africa to obtain accurate fluxes in the J-, H-, and Ks-bands. As a result, we have succeeded in improving the SEDs of the central stars. This improvement of the SEDs allows us to make more reliable selection of the candidates.