검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        1.
        2025.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Vertical takeoff and landing (VTOL) drones are increasingly recognized as an important solution for last-mile delivery in the food and beverage sector, owing to their rapid deployment capabilities and high operational flexibility. In particular, growing interest in drone delivery services has been observed among fast food and coffee franchises, where rapid delivery is essential due to the time-sensitive nature of food and beverage items intended for immediate consumption. Despite this trend, there remains a lack of research on the structural modeling of flight routes for VTOL drones operating under automatic flight conditions, and on the implementation of first-come-first-served (FCFS) delivery services utilizing predefined flight routes. Accordingly, this study comprehensively describes the operations for food and beverage delivery services using VTOL drones. In particular, it addressed the use of multiple drones to conduct FCFS-type multi-point delivery services along fixed routes suitable for automatic flight.
        4,300원
        2.
        2025.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Anomaly detection technique for the Unmanned Aerial Vehicles (UAVs) is one of the important techniques for ensuring airframe stability. There have been many researches on anomaly detection techniques using deep learning. However, most of research on the anomaly detection techniques are not consider the limited computational processing power and available energy of UAVs. Deep learning model convert to the model compression has significant advantages in terms of computational and energy efficiency for machine learning and deep learning. Therefore, this paper suggests a real-time anomaly detection model for the UAVs, achieved through model compression. The suggested anomaly detection model has three main layers which are a convolutional neural network (CNN) layer, a long short-term memory model (LSTM) layer, and an autoencoder (AE) layer. The suggested anomaly detection model undergoes model compression to increase computational efficiency. The model compression has same level of accuracy to that of the original model while reducing computational processing time of the UAVs. The proposed model can increase the stability of UAVs from a software perspective and is expected to contribute to improving UAVs efficiency through increased available computational capacity from a hardware perspective.
        4,000원
        3.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Vertical takeoff and landing (VTOL) is a core feature of unmanned aerial vehicles (UAVs), which are commonly referred to as drones. In emerging smart logistics, drones are expected to play an increasingly important role as mobile platforms. Therefore, research on last-mile delivery using drones is on the rise. There is a growing trend toward providing drone delivery services, particularly among retailers that handle small and lightweight items. However, there is still a lack of research on a structural definition of the VTOL drone flight model for multi-point delivery service. This paper describes a VTOL drone flight route structure for a multi-drone delivery service using rotary-wing type VTOL drones. First, we briefly explore the factors to be considered when providing drone delivery services. Second, a VTOL drone flight route model is introduced using the idea of the nested graph. Based on the proposed model, we describe various time-related attributes for delivery services using drones and present corresponding calculation methods. Additionally, as an application of the drone route model and the time attributes, we comprehensively describe a simple example of the multi-drone delivery for first-come-first-served (FCFS) services.
        4,600원
        4.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Due to COVID-19, changes in consumption trends are taking place in the distribution sector, such as an increase in non-face-to-face consumption and a rapid growth in the online shopping market. However, it is difficult for small and medium-sized export sellers to obtain forecast information on the export market by country, compared to large distributors who can easily build a global sales network. This study is about the prediction of export amount and export volume by country and item for market information analysis of small and medium export sellers. A prediction model was developed using Lasso, XGBoost, and MLP models based on supervised learning and deep learning, and export trends for clothing, cosmetics, and household electronic devices were predicted for Korea's major export countries, the United States, China, and Vietnam. As a result of the prediction, the performance of MAE and RMSE for the Lasso model was excellent, and based on the development results, a market analysis system for small and medium sellers was developed.
        4,000원