검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1

        1.
        2009.10 구독 인증기관·개인회원 무료
        The toxicity of Kaempferia galanga rhizome materials and constituents against Meloidogyne incognita second‐stage juveniles (J2) and eggs were examined. The active principles of K. galanga rhizome were identified as the phenylpropanoids ethyl (E)‐cinnamate (EC, 1) and ethyl (E)‐p‐methoxycinnamate (EMC, 2) by spectroscopic analysis. Results were compared with those of carbofuran, fosthiazate, and metam‐sodium. In direct‐contact mortality bioassay, EC (LC50, 0.037 mg/ml) was the most toxic constituent, followed by EMC (0.041 mg/ml). EC was more effective than carbofuran (LC50, 0.092 mg/ml) but less active than fosthiazate (0.002 mg/ml). EC, egg hatch was inhibited 100, 93, and 87% at 125, 62.5, and 31.25 μg/ml, respectively. EMC caused 100, 81, and 75% inhibition of egg hatch at 125, 62.5, and 31.25 μg/ml, respectively. The inhibition of two phenylpropanoids were similar or more inhibition to that of either carbofuran or metam‐sodium but was lower than that of fosthiazate. In contact + fumigant mortality bioassay, EC and EMC treatments resulted in 86 and c 73% mortality at 0.5 and 0.125 mg/g soil, respectively. The lethality of these phenylpropanoids was almost similar to that of either carbofuran or metam‐sodium but was lower than that of fosthiazate. In vapor‐phase mortality bioassay, EC and EMC were more effective in closed container than open containers, indicating that the mode of delivery of these compounds was, in part, a result of vapor action. K. galanga rhizome‐derived materials, merit further study as potential nematicides and hatching inhibitors for the control of M. incognita populations.