검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        4.
        2007.06 구독 인증기관 무료, 개인회원 유료
        Insulin-like growth factor II (IGF2) and H19 genes are mutually imprinted genes which may be responsible for abnormalities in the cloned fetuses and offspring. This study was performed to identify putative differentially methylated regions (DMRs) of porcine H19 locus and to explore its genomic imprinting in in vitro fertilized (IVF) and somatic cell nuclear transferred (SCNT) embryos. Based on mice genomic data, we identified DMRs on H19 and found porcine H19 DMRs that included three CTCF binding sites. Methylation patterns in IVF and SCNT embryos at the 2-, 4-, 8~16-cells and blastocyst stages were analyzed by BS (Bisulfite Sequencing)-PCR. The CpGs in CTCF1 was significantly unmethylated in the 2-cell stage IVF embryos. However, the 4- (29.1%) and 8~16-cell (68.2%) and blastocyst (48.2%) stages showed higher methylation levels (p<0.01). On the other hand, SCNT embryos were unmethylayted (0~2%) at all stages of development. The CpGs in CTCF2 showed almost unmethylation levels at the 2-, 4- and 8~16-cell and blastocyst stages of development in both IVF (0~14.1%) and SCNT (0~6.4%) embryos. At all stages of development, CTCF3 was unmethylated in IVF (0~17.3%) and SCNT (0~1.2%) embryos except at the blastocyst stage (54.5%) of IVF embryos. In conclusion, porcine SCNT embryos showed an aberrant methylation pattern comprised to IVF embryos. Therefore, we suggest that the aberrant methylation pattern of H19 loci may be a reason for increased abnormal fetus after embryo transfer of porcine SCNT embryos.
        4,000원