검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 25

        21.
        2016.09 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        We used the 4 m Discovery Channel Telescope (DCT) at Lowell observatory in 2014 to observe the Guitar Nebula, an Hα bow-shock nebula around the high-velocity radio pulsar B2224+65. Since the nebula's discovery in 1992, the structure of the bow-shock has undergone significant dynamical changes. We have observed the limb structure, targeting the “body” and “neck” of the guitar. Comparing the DCT observations to 1995 observations with the Palomar 200-inch Hale telescope, we found changes in both spatial structure and surface brightness in the tip, head, and body of the nebula.
        22.
        2016.06 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        We use the non-stationary three dimensional two-layer outer gap model to explain gamma-ray emissions from a pulsar magnetosphere. We found out that for some pulsars like the Geminga pulsar, it was hard to explain emissions above a level of around 1 GeV. We then developed the model into a non-stationary model. In this model we assigned a power-law distribution to one or more of the spectral parameters proposed in the previous model and calculated the weighted phaseaveraged spectrum. Though this model is suitable for some pulsars, it still cannot explain the high energy emission of the Geminga pulsar. An Inverse-Compton Scattering component between the primary particles and the radio photons in the outer magnetosphere was introduced into the model, and this component produced a sufficient number of GeV photons in the spectrum of the Geminga pulsar.
        23.
        2013.09 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        We report the detection of a quasi-sinusoidally modulated optical flux with a period of 4.6343 hour in the optical and infrared band of the Fermi source 2FGL J2339.7-0531. Comparing the multi-wavelength observations, we suggest that 2FGL J2339.7-0531 is a γ-ray emitting millisecond pulsar (MSP) in a binary system with an optically visible late-type companion accreted by the pulsar, where the MSP is responsible for the γ-ray emission while the optical and infrared emission originate from the heated side of the companion. Based on the optical properties, the companion star is believed to be heated by the pulsar and reaches peak magnitude when the heated side faces the observer. We conclude that 2FGL J2339.7-0531 is a member of a subclass of γ-ray emitting pulsars -the ‘black widows’- recently revealed to be evaporating their companions in the late-stage of recycling as a prominent group of these newly revealed Fermi sources.
        24.
        2013.09 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        Rotation-powered pulsars are excellent laboratories for studying particle acceleration as well as fundamental physics of strong gravity, strong magnetic fields and relativity. Particle acceleration and high-energy emission from the polar caps is expected to occur in connection with electron-positron pair cascades. I will review acceleration and gamma-ray emission from the pulsar polar cap and associated slot gap. Predictions of these models can be tested with the data set on pulsars collected by the Large Area Telescope on the Fermi Gamma-Ray Telescope over the last four years, using both detailed light curve fitting, population synthesis and phase-resolved spectroscopy.
        25.
        2013.06 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        We use the outer gap model to explain the spectrum and the energy dependent light curves of the X-ray and soft γ-rayradiations of the spin-down powered pulsar PSR B1509-58. In the outer gap model, most pairs inside the gap are createdaround the null charge surface and the gap’s electric field separates the opposite charges to move in opposite directions.Consequently, the region from the null charge surface to the light cylinder is dominated by the outflow current and that fromthe null charge surface to the star is dominated by the inflow current. We suggest that the viewing angle of PSR B1509-58 onlyreceives the inflow radiation. The incoming curvature photons are converted to pairs by the strong magnetic field of the star.The X-rays and soft γ-rays of PSR B1509-58 result from the synchrotron radiation of these pairs. The magnetic pair creationrequires a large pitch angle, which makes the pulse profile of the synchrotron radiation distinct from that of the curvatureradiation. We carefully trace the pulse profiles of the synchrotron radiation with different pitch angles. We find that thedifferences between the light curves of different energy bands are due to the different pitch angles of the secondary pairs, andthe second peak appearing at E > 10 MeV comes from the region near the star, where the stronger magnetic field allows thepair creation to happen with a smaller pitch angle.
        1 2